BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 14938330)

  • 1. The oxidative dissimilation of mannitol and sorbitol by Pseudomonas fluorescens.
    SEBEK OK; RANDLES CI
    J Bacteriol; 1952 Jun; 63(6):693-700. PubMed ID: 14938330
    [No Abstract]   [Full Text] [Related]  

  • 2. Examining the relative timing of hydrogen abstraction steps during NAD(+)-dependent oxidation of secondary alcohols catalyzed by long-chain D-mannitol dehydrogenase from Pseudomonas fluorescens using pH and kinetic isotope effects.
    Klimacek M; Nidetzky B
    Biochemistry; 2002 Aug; 41(31):10158-65. PubMed ID: 12146981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic study of the catalytic mechanism of mannitol dehydrogenase from Pseudomonas fluorescens.
    Slatner M; Nidetzky B; Kulbe KD
    Biochemistry; 1999 Aug; 38(32):10489-98. PubMed ID: 10441145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the role of Brønsted catalysis in Pseudomonas fluorescens mannitol 2-dehydrogenase.
    Klimacek M; Kavanagh KL; Wilson DK; Nidetzky B
    Biochem J; 2003 Oct; 375(Pt 1):141-9. PubMed ID: 12826012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of Pseudomonas fluorescens mannitol 2-dehydrogenase: evidence for a very divergent long-chain dehydrogenase family.
    Kavanagh KL; Klimacek M; Nidetzky B; Wilson DK
    Chem Biol Interact; 2003 Feb; 143-144():551-8. PubMed ID: 12604241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and function of the genes involved in mannitol, arabitol and glucitol utilization from Pseudomonas fluorescens DSM50106.
    Brünker P; Altenbuchner J; Mattes R
    Gene; 1998 Jan; 206(1):117-26. PubMed ID: 9461423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [EFFECT OF THE SOURCES OF CARBON ON THE BIOSYNTHESIS OF ALPHA-GLUTARIC ACID IN CULTURES OF PSEUDOMONAS FLUORESCENS].
    SHAPASHNIKOV VN; KOSHELEVA NA; KOLESNIKOVA IG; BAIKOVA LA
    Dokl Akad Nauk SSSR; 1964 Jul; 157():180-2. PubMed ID: 14249956
    [No Abstract]   [Full Text] [Related]  

  • 8. Cloning, nucleotide sequence and expression of a mannitol dehydrogenase gene from Pseudomonas fluorescens DSM 50106 in Escherichia coli.
    Brünker P; Altenbuchner J; Kulbe KD; Mattes R
    Biochim Biophys Acta; 1997 Mar; 1351(1-2):157-67. PubMed ID: 9116029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of polyols by Nocardia corallina.
    MAURER PR; BATT RD
    J Bacteriol; 1962 May; 83(5):1131-9. PubMed ID: 14471555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymes related to fructose utilization in Pseudomonas cepacia.
    Allenza P; Lee YN; Lessie TG
    J Bacteriol; 1982 Jun; 150(3):1348-56. PubMed ID: 6281243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversal of the mannitol-sorbitol diauxie in Escherichia coli.
    Lengeler J; Lin EC
    J Bacteriol; 1972 Nov; 112(2):840-8. PubMed ID: 4563979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbohydrate oxidation by Pseudomonas fluorescens. I. The mechanism of glucose and gluconate oxidation.
    WOOD WA; SCHWERDT RF
    J Biol Chem; 1953 Apr; 201(2):501-11. PubMed ID: 13061385
    [No Abstract]   [Full Text] [Related]  

  • 13. [OXIDATION-REDUCTION OF PSEUDOMONAS FLUORESCENS PIGMENTS IN VIVO AND IN VITRO].
    GOUDA S
    Pathol Microbiol (Basel); 1965; 28():107-13. PubMed ID: 14299854
    [No Abstract]   [Full Text] [Related]  

  • 14. 6-Hydroxynicotinic acid as an intermediate in the oxidation of nicotinic acid by Pseudomonas fluorescens.
    HUGHES DE
    Biochem J; 1955 Jun; 60(2):303-10. PubMed ID: 14389240
    [No Abstract]   [Full Text] [Related]  

  • 15. Application of NAD-dependent polyol dehydrogenases for enzymatic mannitol/sorbitol production with coenzyme regeneration.
    Parmentier S; Arnaut F; Soetaert W; Vandamme EJ
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):255-62. PubMed ID: 15296174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane enzymes associated with the dissimilation of some citric acid cycle substrates and production of extracellular oxidation products in chemostat cultures of Pseudomonas fluorescens.
    Lee WS; Cooper JK; Lynch WH
    Can J Microbiol; 1984 Mar; 30(3):396-405. PubMed ID: 6426768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on the aerobic oxidation of fatty acids by bacteria. V. Caprate oxidation by cell-free extracts of Pseudomonas fluorescens.
    IVLER D; WOLFE JB; RITTENBERG SC
    J Bacteriol; 1955 Jul; 70(1):99-103. PubMed ID: 13242533
    [No Abstract]   [Full Text] [Related]  

  • 18. The oxidation of nicotinic acid by Pseudomonas fluorescens.
    PINSKY A; MICHAELIS M
    Biochem J; 1952 Sep; 52(1):33-8. PubMed ID: 13018158
    [No Abstract]   [Full Text] [Related]  

  • 19. Carbohydrate oxidation by Pseudomonas fluorescens. II. Mechanism of hexose phosphate oxidation.
    WOOD WA; SCHWERDT RF
    J Biol Chem; 1954 Feb; 206(2):625-35. PubMed ID: 13143021
    [No Abstract]   [Full Text] [Related]  

  • 20. The action of chloramphenicol on the oxidation of succinate and related compounds by Pseudomonas fluorescens.
    KUSHNER DJ
    Arch Biochem Biophys; 1955 Oct; 58(2):332-46. PubMed ID: 13269127
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.