These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 14940453)

  • 1. [Determination and elimination of losses of volatile substances in reactions with gas separation].
    KUL'BAKH VO
    Med Prom SSSR; 1952; 3():16-8. PubMed ID: 14940453
    [No Abstract]   [Full Text] [Related]  

  • 2. [USE OF COMBUSTION PRODUCTS IN THE FORM OF INERT GAS IN DRUG INDUSTRY].
    KONOVALOVA NM; OTROSHKO NT; ROIZEN Ie
    Med Prom SSSR; 1964 Mar; 18():26-32. PubMed ID: 14185057
    [No Abstract]   [Full Text] [Related]  

  • 3. Inert gas transport in blood and tissues.
    Baker AB; Farmery AD
    Compr Physiol; 2011 Apr; 1(2):569-92. PubMed ID: 23737195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gas-liquid chromatography: a method of separation and identification of volatile materials.
    JAMES AT
    J Pharm Pharmacol; 1956 Apr; 8(4):232-40. PubMed ID: 13307412
    [No Abstract]   [Full Text] [Related]  

  • 5. [Study of the composition and elaboration of a catalytic method for purifying the gaseous waste from neomycin and monomycin production].
    Khanina GF; Vedeneev KP; Tikhonova NA
    Antibiotiki; 1977 Nov; 22(11):989-94. PubMed ID: 339826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Study of the composition of the exhaust gases from the manufacture of feed antibiotics and of fungal and bacterial entomopathogenic preparations].
    Vedeneev KP; Khanina GF; Stepanova MI
    Antibiotiki; 1976 Jun; 21(6):514-9. PubMed ID: 942191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smart multi-channel two-dimensional micro-gas chromatography for rapid workplace hazardous volatile organic compounds measurement.
    Liu J; Seo JH; Li Y; Chen D; Kurabayashi K; Fan X
    Lab Chip; 2013 Mar; 13(5):818-25. PubMed ID: 23303462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Determination of volatile organic substances in soil by mass chromatography spectrometry].
    Malysheva AG; Rastiannikov EG
    Gig Sanit; 1993 May; (5):66-8. PubMed ID: 8063174
    [No Abstract]   [Full Text] [Related]  

  • 9. The Absorption and Elimination of Volatile Substances Through the Lungs: Anaesthesia, Poisoning by Gases and Vapours in Industry, Treatment of Asphyxia.
    Henderson Y
    Br Med J; 1926 Jan; 1(3393):41-6. PubMed ID: 20772286
    [No Abstract]   [Full Text] [Related]  

  • 10. A biofilter integrated with gas membrane separation unit for the treatment of fluctuating styrene loads.
    Li L; Lian J; Han Y; Liu J
    Bioresour Technol; 2012 May; 111():76-83. PubMed ID: 22382297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid-Gas Mass Transfer of Volatile Substances in an Energy Dissipating Structure.
    Matias N; Ferreira F; Matos JS; Nielsen AH; Vollertsen J
    Water Environ Res; 2018 Mar; 90(3):269-277. PubMed ID: 29521622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A proposal for a test method for assessment of hazard property HP 12 ("Release of an acute toxic gas") in hazardous waste classification - Experience from 49 waste.
    Hennebert P; Samaali I; Molina P
    Waste Manag; 2016 Dec; 58():25-33. PubMed ID: 27687077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research committee reports. Studies on the efficiency of inert gas flushing techniques.
    Anschel J
    Bull Parenter Drug Assoc; 1971; 25(2):68-72. PubMed ID: 5563318
    [No Abstract]   [Full Text] [Related]  

  • 14. Determination of volatile reducing substances (alcohol or ether) in blood and gases using barium diphenylamine sulfonate as an indicator for chromic acid titration.
    HEMINGWAY A; BERNAT LA; MASCHMEYER J
    J Lab Clin Med; 1948 Jan; 33(1):126-34. PubMed ID: 18907897
    [No Abstract]   [Full Text] [Related]  

  • 15. [The content of hazardous substances in the air of the central laboratory of the Astrakhan gas processing plant].
    Boĭko VI; Dotsenko IuI; Boĭko OV
    Gig Sanit; 2011; (3):33-8. PubMed ID: 21842733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peak capacity of ion mobility mass spectrometry: the utility of varying drift gas polarizability for the separation of tryptic peptides.
    Ruotolo BT; McLean JA; Gillig KJ; Russell DH
    J Mass Spectrom; 2004 Apr; 39(4):361-7. PubMed ID: 15103649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymeric membrane materials: new aspects of empirical approaches to prediction of gas permeability parameters in relation to permanent gases, linear lower hydrocarbons and some toxic gases.
    Malykh OV; Golub AY; Teplyakov VV
    Adv Colloid Interface Sci; 2011 May; 164(1-2):89-99. PubMed ID: 21094931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies for the identification, control and determination of genotoxic impurities in drug substances: a pharmaceutical industry perspective.
    Raman NV; Prasad AV; Ratnakar Reddy K
    J Pharm Biomed Anal; 2011 Jun; 55(4):662-7. PubMed ID: 21193280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vadose zone attenuation of organic compounds at a crude oil spill site - interactions between biogeochemical reactions and multicomponent gas transport.
    Molins S; Mayer KU; Amos RT; Bekins BA
    J Contam Hydrol; 2010 Mar; 112(1-4):15-29. PubMed ID: 19853961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Experimental studies on the recovery of anesthetic gases].
    Marx T; Gross-Alltag F; Ermisch J; Hähnel J; Weber L; Friesdorf W
    Anaesthesist; 1992 Feb; 41(2):99-102. PubMed ID: 1562100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.