BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 14941086)

  • 1. Energetics of peptide formation.
    BREITENBACH JW; DERKOSCH J; WESSELY F
    Nature; 1952 May; 169(4309):922. PubMed ID: 14941086
    [No Abstract]   [Full Text] [Related]  

  • 2. New method to study the effects of peptide sequence on the dissociation energetics of peptide ions.
    Vachet RW; Glish GL
    J Am Soc Mass Spectrom; 1998 Feb; 9(2):175-7. PubMed ID: 9679597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-induced dissociation: an effective tool to probe structure, energetics and fragmentation mechanisms of protonated peptides.
    Dongré AR; Somogyi A; Wysocki VH
    J Mass Spectrom; 1996 Apr; 31(4):339-50. PubMed ID: 8799282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the basic residue on the energetics, dynamics, and mechanisms of gas-phase fragmentation of protonated peptides.
    Laskin J; Yang Z; Song T; Lam C; Chu IK
    J Am Chem Soc; 2010 Nov; 132(45):16006-16. PubMed ID: 20977217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide synthesis in aqueous environments: the role of extreme conditions on peptide bond formation and peptide hydrolysis.
    Schreiner E; Nair NN; Marx D
    J Am Chem Soc; 2009 Sep; 131(38):13668-75. PubMed ID: 19725519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of an unusually facile fragmentation pathway of gas-phase peptide ions: a study on the gas-phase fragmentation mechanism and energetics of tryptic peptides modified with 4-sulfophenyl isothiocyanate (SPITC) and 4-chlorosulfophenyl isocyanate (SPC) and their 18-crown-6 complexes.
    Shin JW; Lee YH; Hwang S; Lee SW
    J Mass Spectrom; 2007 Mar; 42(3):380-8. PubMed ID: 17200996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energetics of polar side-chain interactions in helical peptides: salt effects on ion pairs and hydrogen bonds.
    Smith JS; Scholtz JM
    Biochemistry; 1998 Jan; 37(1):33-40. PubMed ID: 9425023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetics and dynamics of peptide fragmentation from multiple-collision activation and surface-induced dissociation studies.
    Laskin J
    Eur J Mass Spectrom (Chichester); 2004; 10(2):259-67. PubMed ID: 15103103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetics of the interaction between water and the helical peptide group and its role in determining helix propensities.
    Avbelj F; Luo P; Baldwin RL
    Proc Natl Acad Sci U S A; 2000 Sep; 97(20):10786-91. PubMed ID: 10984522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutathione as a prebiotic answer to α-peptide based life.
    Fiser B; Jójárt B; Szőri M; Lendvay G; Csizmadia IG; Viskolcz B
    J Phys Chem B; 2015 Mar; 119(10):3940-7. PubMed ID: 25700230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural aspects of Ca2+ binding by acyclic peptides: low-energy conformational domains and molecular dynamics of N-acetyl-L-prolyl-D-alanyl-L-alanine-N'-methylamide.
    Michel AG; Jeandenans C; Ananthanarayanan VS
    J Biomol Struct Dyn; 1992 Oct; 10(2):281-93. PubMed ID: 1466810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetics of pore formation induced by membrane active peptides.
    Lee MT; Chen FY; Huang HW
    Biochemistry; 2004 Mar; 43(12):3590-9. PubMed ID: 15035629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembly of peptide porphyrin complexes: toward the development of smart biomaterials.
    Kovaric BC; Kokona B; Schwab AD; Twomey MA; de Paula JC; Fairman R
    J Am Chem Soc; 2006 Apr; 128(13):4166-7. PubMed ID: 16568957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-reactive binding of cyclic peptides to an anti-TGFalpha antibody Fab fragment: an X-ray structural and thermodynamic analysis.
    Hahn M; Winkler D; Welfle K; Misselwitz R; Welfle H; Wessner H; Zahn G; Scholz C; Seifert M; Harkins R; Schneider-Mergener J; Höhne W
    J Mol Biol; 2001 Nov; 314(2):293-309. PubMed ID: 11718562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamics of the alpha-helix-coil transition of amphipathic peptides in a membrane environment: implications for the peptide-membrane binding equilibrium.
    Wieprecht T; Apostolov O; Beyermann M; Seelig J
    J Mol Biol; 1999 Dec; 294(3):785-94. PubMed ID: 10610796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energetics investigation on encapsulation of protein/peptide drugs in carbon nanotubes.
    Chen Q; Wang Q; Liu YC; Wu T; Kang Y; Moore JD; Gubbins KE
    J Chem Phys; 2009 Jul; 131(1):015101. PubMed ID: 19586122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On cooperative effects and aggregation of GNNQQNY and NNQQNY peptides.
    Nochebuena J; Ireta J
    J Chem Phys; 2015 Oct; 143(13):135103. PubMed ID: 26450334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetics of Shaker K channels block by inactivation peptides.
    Murrell-Lagnado RD; Aldrich RW
    J Gen Physiol; 1993 Dec; 102(6):977-1003. PubMed ID: 8133246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limited validity of group additivity for the folding energetics of the peptide group.
    Avbelj F; Baldwin RL
    Proteins; 2006 May; 63(2):283-9. PubMed ID: 16288449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of peptide radical ions through dissociative electron transfer in ternary metal-ligand-peptide complexes.
    Chu IK; Laskin J
    Eur J Mass Spectrom (Chichester); 2011; 17(6):543-56. PubMed ID: 22274945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.