These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 14946)
21. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Thornalley PJ; Langborg A; Minhas HS Biochem J; 1999 Nov; 344 Pt 1(Pt 1):109-16. PubMed ID: 10548540 [TBL] [Abstract][Full Text] [Related]
22. The structure and function of ribonuclease T1. XI. Modification of the single arginine residue in ribonuclease T1 by phenylglyoxal and glyoxal. Takahashi K J Biochem; 1970 Nov; 68(5):659-64. PubMed ID: 5484446 [No Abstract] [Full Text] [Related]
23. Chemical modification of an arginine residue in the ATP-binding site of Ca2+ -transporting ATPase of sarcoplasmic reticulum by phenylglyoxal. Yamamoto H; Kawakita M Mol Cell Biochem; 1999 Jan; 190(1-2):169-77. PubMed ID: 10098984 [TBL] [Abstract][Full Text] [Related]
24. Spectroscopic studies of the protein-methylglyoxal adduct. McLaughlin JA; Pethig R; Szent-Györgyi A Proc Natl Acad Sci U S A; 1980 Feb; 77(2):949-51. PubMed ID: 6928691 [TBL] [Abstract][Full Text] [Related]
25. Dual effects of phloretin and phloridzin on the glycation induced by methylglyoxal in model systems. Ma J; Peng X; Zhang X; Chen F; Wang M Chem Res Toxicol; 2011 Aug; 24(8):1304-11. PubMed ID: 21696151 [TBL] [Abstract][Full Text] [Related]
26. Chemical modifications of ribonuclease U1. Hashimoto J; Takahashi K J Biochem; 1977 Apr; 81(4):1175-80. PubMed ID: 18450 [TBL] [Abstract][Full Text] [Related]
27. Quercetin inhibits advanced glycation end product formation by trapping methylglyoxal and glyoxal. Li X; Zheng T; Sang S; Lv L J Agric Food Chem; 2014 Dec; 62(50):12152-8. PubMed ID: 25412188 [TBL] [Abstract][Full Text] [Related]
28. Determination of glyoxal and methylglyoxal in serum by UHPLC coupled with fluorescence detection. Dhananjayan K; Irrgang F; Raju R; Harman DG; Moran C; Srikanth V; Münch G Anal Biochem; 2019 May; 573():51-66. PubMed ID: 30796906 [TBL] [Abstract][Full Text] [Related]
29. Effects of hydroxycinnamic acids on the reduction of furan and α-dicarbonyl compounds. Lee SM; Zheng LW; Jung Y; Hwang GS; Kim YS Food Chem; 2020 May; 312():126085. PubMed ID: 31896460 [TBL] [Abstract][Full Text] [Related]
30. Differences in glyoxal and methylglyoxal metabolism determine cellular susceptibility to protein carbonylation and cytotoxicity. Yang K; Qiang D; Delaney S; Mehta R; Bruce WR; O'Brien PJ Chem Biol Interact; 2011 May; 191(1-3):322-9. PubMed ID: 21334317 [TBL] [Abstract][Full Text] [Related]
31. Analysis, distribution, and dietary exposure of glyoxal and methylglyoxal in cookies and their relationship with other heat-induced contaminants. Arribas-Lorenzo G; Morales FJ J Agric Food Chem; 2010 Mar; 58(5):2966-72. PubMed ID: 20131787 [TBL] [Abstract][Full Text] [Related]
32. The amino acid requirements of rabbit fibroblasts, strain RM3-56. HAFF RF; SWIM HE J Gen Physiol; 1957 Sep; 41(1):91-100. PubMed ID: 13463271 [TBL] [Abstract][Full Text] [Related]
33. Tea polyphenol (-)-epigallocatechin-3-gallate: a new trapping agent of reactive dicarbonyl species. Sang S; Shao X; Bai N; Lo CY; Yang CS; Ho CT Chem Res Toxicol; 2007 Dec; 20(12):1862-70. PubMed ID: 18001060 [TBL] [Abstract][Full Text] [Related]
34. Essential arginine residues in isoprenylcysteine protein carboxyl methyltransferase. Boivin D; Lin W; Béliveau R Biochem Cell Biol; 1997; 75(1):63-9. PubMed ID: 9192075 [TBL] [Abstract][Full Text] [Related]
35. Effect of dwell time on carbonyl stress using icodextrin and amino acid peritoneal dialysis fluids. Ueda Y; Miyata T; Goffin E; Yoshino A; Inagi R; Ishibashi Y; Izuhara Y; Saito A; Kurokawa K; Van Ypersele De Strihou C Kidney Int; 2000 Dec; 58(6):2518-24. PubMed ID: 11115086 [TBL] [Abstract][Full Text] [Related]
36. Chemical modification of canavanine with p-nitrophenylglyoxal. Factors influencing the chemistry and reactivity of alpha-dicarbonyl-guanidino reactions. Soman G; Hurst MO; Graves DJ Int J Pept Protein Res; 1985 May; 25(5):517-25. PubMed ID: 4019031 [TBL] [Abstract][Full Text] [Related]
37. Model studies on protein glycation: influence of cysteine on the reactivity of arginine and lysine residues toward glyoxal. Schwarzenbolz U; Mende S; Henle T Ann N Y Acad Sci; 2008 Apr; 1126():248-52. PubMed ID: 18448824 [TBL] [Abstract][Full Text] [Related]
38. Reactions of nucleosides with glyoxal and acrolein. Shapiro R; Sodum RS; Everett DW; Kundu SK IARC Sci Publ; 1986; (70):165-73. PubMed ID: 3793171 [TBL] [Abstract][Full Text] [Related]
39. Modification of the amino group of guanosine by methylglyoxal and other alpha-ketoaldehydes in the presence of hydrogen peroxide. Nukaya H; Inaoka Y; Ishida H; Tsuji K; Suwa Y; Wakabayashi K; Kosuge T Chem Pharm Bull (Tokyo); 1993 Apr; 41(4):649-53. PubMed ID: 8508467 [TBL] [Abstract][Full Text] [Related]
40. Methylglyoxal-induced modification of arginine residues decreases the activity of NADPH-generating enzymes. Morgan PE; Sheahan PJ; Pattison DI; Davies MJ Free Radic Biol Med; 2013 Aug; 61():229-42. PubMed ID: 23579026 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]