These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 1494955)
1. Dynamics of terminal arbor formation and target approach of retinotectal axons in living zebrafish embryos: a time-lapse study of single axons. Kaethner RJ; Stuermer CA J Neurosci; 1992 Aug; 12(8):3257-71. PubMed ID: 1494955 [TBL] [Abstract][Full Text] [Related]
2. Growth behavior of retinotectal axons in live zebrafish embryos under TTX-induced neural impulse blockade. Kaethner RJ; Stuermer CA J Neurobiol; 1994 Jul; 25(7):781-96. PubMed ID: 8089656 [TBL] [Abstract][Full Text] [Related]
3. Inaccuracies in initial growth and arborization of chick retinotectal axons followed by course corrections and axon remodeling to develop topographic order. Nakamura H; O'Leary DD J Neurosci; 1989 Nov; 9(11):3776-95. PubMed ID: 2585055 [TBL] [Abstract][Full Text] [Related]
4. Development of the retinotectal projection in zebrafish embryos under TTX-induced neural-impulse blockade. Stuermer CA; Rohrer B; Münz H J Neurosci; 1990 Nov; 10(11):3615-26. PubMed ID: 2230950 [TBL] [Abstract][Full Text] [Related]
5. Synaptic activity and activity-dependent competition regulates axon arbor maturation, growth arrest, and territory in the retinotectal projection. Ben Fredj N; Hammond S; Otsuna H; Chien CB; Burrone J; Meyer MP J Neurosci; 2010 Aug; 30(32):10939-51. PubMed ID: 20702722 [TBL] [Abstract][Full Text] [Related]
6. Retinotopic organization of the developing retinotectal projection in the zebrafish embryo. Stuermer CA J Neurosci; 1988 Dec; 8(12):4513-30. PubMed ID: 2848935 [TBL] [Abstract][Full Text] [Related]
7. Cell-autonomous TrkB signaling in presynaptic retinal ganglion cells mediates axon arbor growth and synapse maturation during the establishment of retinotectal synaptic connectivity. Marshak S; Nikolakopoulou AM; Dirks R; Martens GJ; Cohen-Cory S J Neurosci; 2007 Mar; 27(10):2444-56. PubMed ID: 17344382 [TBL] [Abstract][Full Text] [Related]
8. MK801 increases retinotectal arbor size in developing zebrafish without affecting kinetics of branch elimination and addition. Schmidt JT; Buzzard M; Borress R; Dhillon S J Neurobiol; 2000 Feb; 42(3):303-14. PubMed ID: 10645970 [TBL] [Abstract][Full Text] [Related]
9. Dynamics of process formation during differentiation of tectal neurons in embryonic zebrafish. Kaethner RJ; Stuermer CA J Neurobiol; 1997 Jun; 32(6):627-39. PubMed ID: 9183742 [TBL] [Abstract][Full Text] [Related]
10. In vivo observations of timecourse and distribution of morphological dynamics in Xenopus retinotectal axon arbors. Witte S; Stier H; Cline HT J Neurobiol; 1996 Oct; 31(2):219-34. PubMed ID: 8885202 [TBL] [Abstract][Full Text] [Related]
11. Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: possible role in activity-driven sharpening. Schmidt JT; Fleming MR; Leu B J Neurobiol; 2004 Feb; 58(3):328-40. PubMed ID: 14750146 [TBL] [Abstract][Full Text] [Related]
13. Development of topographic order in the mammalian retinocollicular projection. Simon DK; O'Leary DD J Neurosci; 1992 Apr; 12(4):1212-32. PubMed ID: 1313491 [TBL] [Abstract][Full Text] [Related]
14. Rules for retinotectal terminal arborizations in the goldfish optic tectum: a whole-mount study. Stuermer CA J Comp Neurol; 1984 Oct; 229(2):214-32. PubMed ID: 6501601 [TBL] [Abstract][Full Text] [Related]
15. Pathfinding and target selection of goldfish retinal axons regenerating under TTX-induced impulse blockade. Hartlieb E; Stuermer CA J Comp Neurol; 1989 Jun; 284(1):148-68. PubMed ID: 2754029 [TBL] [Abstract][Full Text] [Related]
16. Trajectories of regenerating retinal axons in the goldfish tectum: II. Exploratory branches and growth cones on axons at early regeneration stages. Stuermer CA J Comp Neurol; 1988 Jan; 267(1):69-91. PubMed ID: 3343393 [TBL] [Abstract][Full Text] [Related]
17. Axonal arborization in the developing chick retinotectal system. Thanos S; Bonhoeffer F J Comp Neurol; 1987 Jul; 261(1):155-64. PubMed ID: 3624542 [TBL] [Abstract][Full Text] [Related]
18. Evidence for the stability of positional markers in the goldfish tectum. Busse U; Stuermer CA J Comp Neurol; 1989 Oct; 288(4):538-54. PubMed ID: 2808749 [TBL] [Abstract][Full Text] [Related]
19. Retinotopic order in the absence of axon competition. Gosse NJ; Nevin LM; Baier H Nature; 2008 Apr; 452(7189):892-5. PubMed ID: 18368050 [TBL] [Abstract][Full Text] [Related]
20. Staining of regenerated optic arbors in goldfish tectum: progressive changes in immature arbors and a comparison of mature regenerated arbors with normal arbors. Schmidt JT; Turcotte JC; Buzzard M; Tieman DG J Comp Neurol; 1988 Mar; 269(4):565-91. PubMed ID: 3372728 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]