These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 1495052)
21. [New models of the circulation of the causative agent of malaria Plasmodium gallinaceum using malarial mosquitoes in the fauna of the USSR]. Rasnitsyn SP; Zvantsov AB; Iasiukevich VV Parazitologiia; 1991; 25(3):196-202. PubMed ID: 1813841 [TBL] [Abstract][Full Text] [Related]
22. Artesunate-tafenoquine combination therapy promotes clearance and abrogates transmission of the avian malaria parasite Plasmodium gallinaceum. Tasai S; Saiwichai T; Kaewthamasorn M; Tiawsirisup S; Buddhirakkul P; Chaichalotornkul S; Pattaradilokrat S Vet Parasitol; 2017 Jan; 233():97-106. PubMed ID: 28043395 [TBL] [Abstract][Full Text] [Related]
23. Plasmodium gallinaceum preferentially invades vesicular ATPase-expressing cells in Aedes aegypti midgut. Shahabuddin M; Pimenta PF Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3385-9. PubMed ID: 9520375 [TBL] [Abstract][Full Text] [Related]
24. Malarial infection in Aedes aegypti : effects on feeding, fecundity and metabolic rate. Gray EM; Bradley TJ Parasitology; 2006 Feb; 132(Pt 2):169-76. PubMed ID: 16197594 [TBL] [Abstract][Full Text] [Related]
25. Plasmodium gallinaceum: mosquito peritrophic matrix and the parasite-vector compatibility. Shahabuddin M; Kaidoh T; Aikawa M; Kaslow DC Exp Parasitol; 1995 Nov; 81(3):386-93. PubMed ID: 7498435 [TBL] [Abstract][Full Text] [Related]
26. Virus-expressed, recombinant single-chain antibody blocks sporozoite infection of salivary glands in Plasmodium gallinaceum-infected Aedes aegypti. de Lara Capurro M; Coleman J; Beerntsen BT; Myles KM; Olson KE; Rocha E; Krettli AU; James AA Am J Trop Med Hyg; 2000 Apr; 62(4):427-33. PubMed ID: 11220756 [TBL] [Abstract][Full Text] [Related]
27. In vivo transmission blocking activities of artesunate on the avian malaria parasite Plasmodium gallinaceum. Kumnuan R; Pattaradilokrat S; Chumpolbanchorn K; Pimnon S; Narkpinit S; Harnyuttanakorn P; Saiwichai T Vet Parasitol; 2013 Nov; 197(3-4):447-54. PubMed ID: 23937960 [TBL] [Abstract][Full Text] [Related]
28. The journey of malaria sporozoites in the mosquito salivary gland. Pimenta PF; Touray M; Miller L J Eukaryot Microbiol; 1994; 41(6):608-24. PubMed ID: 7866385 [TBL] [Abstract][Full Text] [Related]
29. Effect of host infection with Plasmodium gallinaceum on the reproductive capacity of Aedes aegypti. Freier JE; Friedman S J Invertebr Pathol; 1976 Sep; 28(2):161-6. PubMed ID: 965781 [No Abstract] [Full Text] [Related]
30. Aedes aegypti SGS1 is critical for Plasmodium gallinaceum infection of both the mosquito midgut and salivary glands. Kojin BB; Martin-Martin I; Araújo HRC; Bonilla B; Molina-Cruz A; Calvo E; Capurro ML; Adelman ZN Malar J; 2021 Jan; 20(1):11. PubMed ID: 33407511 [TBL] [Abstract][Full Text] [Related]
31. Effect of bacillus thuringiensis ssp. israelensis on the development of Plasmodium gallinaceum in Aedes aegypti (Diptera: Culicidae). Kala MK; Gunasekaran K Ann Trop Med Parasitol; 1999 Jan; 93(1):89-95. PubMed ID: 10492676 [TBL] [Abstract][Full Text] [Related]
32. Plasmodium development in white-eye (kh(w)) and transformed strains (kh43) of Aedes aegypti (Diptera: Culicidae). Beerntsen BT; Li J J Med Entomol; 2006 Mar; 43(2):318-22. PubMed ID: 16619617 [TBL] [Abstract][Full Text] [Related]
33. [The characteristics of Aedes togoi susceptibility to Plasmodium gallinaceum]. Rasnitsyn SP; Iasiukevich VV; Zvantsov AB Med Parazitol (Mosk); 1990; (6):24-6. PubMed ID: 2290395 [TBL] [Abstract][Full Text] [Related]
34. [Infectibility of Aedes aegypti from chicks infected with Plasmodium gallinaceum in incubation stage]. VOLOVIK RA Med Parazitol (Mosk); 1954; 23(4):360. PubMed ID: 14355424 [No Abstract] [Full Text] [Related]
35. Unique specificity of in vitro inhibition of mosquito midgut trypsin-like activity correlates with in vivo inhibition of malaria parasite infectivity. Shahabuddin M; Criscio M; Kaslow DC Exp Parasitol; 1995 Mar; 80(2):212-9. PubMed ID: 7534722 [TBL] [Abstract][Full Text] [Related]
36. Blood-meal preferences and avian malaria detection in mosquitoes (Diptera: Culicidae) captured at different land use types within a neotropical montane cloud forest matrix. Abella-Medrano CA; Ibáñez-Bernal S; Carbó-Ramírez P; Santiago-Alarcon D Parasitol Int; 2018 Jun; 67(3):313-320. PubMed ID: 29408493 [No Abstract] [Full Text] [Related]
37. Endogenously-expressed NH2-terminus of circumsporozoite protein interferes with sporozoite invasion of mosquito salivary glands. Kojin BB; Costa-da-Silva AL; Maciel C; Henriques DA; Carvalho DO; Martin K; Marinotti O; James AA; Bonaldo MC; Capurro ML Malar J; 2016 Mar; 15():153. PubMed ID: 26964736 [TBL] [Abstract][Full Text] [Related]
38. Developmentally regulated infectivity of malaria sporozoites for mosquito salivary glands and the vertebrate host. Touray MG; Warburg A; Laughinghouse A; Krettli AU; Miller LH J Exp Med; 1992 Jun; 175(6):1607-12. PubMed ID: 1588284 [TBL] [Abstract][Full Text] [Related]
39. Direct and indirect immunosuppression by a malaria parasite in its mosquito vector. Boëte C; Paul RE; Koella JC Proc Biol Sci; 2004 Aug; 271(1548):1611-5. PubMed ID: 15306308 [TBL] [Abstract][Full Text] [Related]
40. Lectin-binding sites in the midgut of the mosquitoes Anopheles stephensi Liston and Aedes aegypti L. (Diptera: Culicidae). Rudin W; Hecker H Parasitol Res; 1989; 75(4):268-79. PubMed ID: 2649879 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]