BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 14959845)

  • 1. Dendritic cell-based immunotherapy in multiple myeloma.
    Yi Q
    Leuk Lymphoma; 2003 Dec; 44(12):2031-8. PubMed ID: 14959845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing dendritic cell vaccine for immunotherapy in multiple myeloma: tumour lysates are more potent tumour antigens than idiotype protein to promote anti-tumour immunity.
    Hong S; Li H; Qian J; Yang J; Lu Y; Yi Q
    Clin Exp Immunol; 2012 Nov; 170(2):167-77. PubMed ID: 23039887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. B-cell lymphoma and myeloma protection induced by idiotype vaccination with dendritic cells is mediated entirely by T cells in mice.
    Cohen S; Haimovich J; Hollander N
    J Immunother; 2005; 28(5):461-6. PubMed ID: 16113602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dendritic cell biology and the application of dendritic cells to immunotherapy of multiple myeloma.
    Hájek R; Butch AW
    Med Oncol; 2000 Feb; 17(1):2-15. PubMed ID: 10713654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Dendritic cell-based immunotherapy for multiple myeloma -- review].
    Zhu XJ; He L; Sun XM
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2009 Jun; 17(3):821-5. PubMed ID: 19549416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunotherapy in multiple myeloma: current strategies and future prospects.
    Yi Q
    Expert Rev Vaccines; 2003 Jun; 2(3):391-8. PubMed ID: 12903804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dendritic cell-based combined immunotherapy with autologous tumor-pulsed dendritic cell vaccine and activated T cells for cancer patients: rationale, current progress, and perspectives.
    Morisaki T; Matsumoto K; Onishi H; Kuroki H; Baba E; Tasaki A; Kubo M; Nakamura M; Inaba S; Yamaguchi K; Tanaka M; Katano M
    Hum Cell; 2003 Dec; 16(4):175-82. PubMed ID: 15147037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dendritic cell-based immunotherapy for the treatment of hematological malignancies.
    Büchler T; Michalek J; Kovarova L; Musilova R; Hajek R
    Hematology; 2003 Apr; 8(2):97-104. PubMed ID: 12745659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunotherapy of hematological malignancies using dendritic cells.
    Van de Velde AL; Berneman ZN; Van Tendeloo VF
    Bull Cancer; 2008 Mar; 95(3):320-6. PubMed ID: 18390412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunotherapy using dendritic cells against multiple myeloma: how to improve?
    Nguyen-Pham TN; Lee YK; Kim HJ; Lee JJ
    Clin Dev Immunol; 2012; 2012():397648. PubMed ID: 22481968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dendritic cell vaccines in the treatment of multiple myeloma: advances and limitations.
    Büchler T; Hajek R
    Med Oncol; 2002; 19(4):213-8. PubMed ID: 12512914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eliciting cytotoxic T lymphocytes against human laryngeal cancer-derived antigens: evaluation of dendritic cells pulsed with a heat-treated tumor lysate and other antigen-loading strategies for dendritic-cell-based vaccination.
    Wei FQ; Sun W; Wong TS; Gao W; Wen YH; Wei JW; Wei Y; Wen WP
    J Exp Clin Cancer Res; 2016 Jan; 35():18. PubMed ID: 26795730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dendritic cells in clinical trials for multiple myeloma.
    Reichardt VL; Brossart P
    Methods Mol Med; 2005; 109():127-36. PubMed ID: 15585918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DC in multiple myeloma immunotherapy.
    Turtle CJ; Brown RD; Joshua DE; Hart DN
    Cytotherapy; 2004; 6(2):128-37. PubMed ID: 15203989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Idiotype vaccination of multiple myeloma patients using monocyte-derived dendritic cells.
    Reichardt VL; Milazzo C; Brugger W; Einsele H; Kanz L; Brossart P
    Haematologica; 2003 Oct; 88(10):1139-49. PubMed ID: 14555310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dendritic Cell-Based Immunotherapy in Multiple Myeloma: Challenges, Opportunities, and Future Directions.
    Verheye E; Bravo Melgar J; Deschoemaeker S; Raes G; Maes A; De Bruyne E; Menu E; Vanderkerken K; Laoui D; De Veirman K
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dendritic cell-tumor cell hybrids enhance the induction of cytotoxic T lymphocytes against murine colon cancer: a comparative analysis of antigen loading methods for the vaccination of immunotherapeutic dendritic cells.
    Yasuda T; Kamigaki T; Nakamura T; Imanishi T; Hayashi S; Kawasaki K; Takase S; Ajiki T; Kuroda Y
    Oncol Rep; 2006 Dec; 16(6):1317-24. PubMed ID: 17089056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Idiotypic vaccination for B-cell malignancies as a model for therapeutic cancer vaccines: from prototype protein to second generation vaccines.
    Ruffini PA; Neelapu SS; Kwak LW; Biragyn A
    Haematologica; 2002 Sep; 87(9):989-1001. PubMed ID: 12217812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antitumor monoclonal antibodies enhance cross-presentation ofcCellular antigens and the generation of myeloma-specific killer T cells by dendritic cells.
    Dhodapkar KM; Krasovsky J; Williamson B; Dhodapkar MV
    J Exp Med; 2002 Jan; 195(1):125-33. PubMed ID: 11781371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NY-ESO-1 immunotherapy for multiple myeloma.
    Szmania S; Tricot G; van Rhee F
    Leuk Lymphoma; 2006 Oct; 47(10):2037-48. PubMed ID: 17071474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.