These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 14959890)

  • 1. The effects of shortening lactoferrin derived peptides against tumour cells, bacteria and normal human cells.
    Yang N; Strøm MB; Mekonnen SM; Svendsen JS; Rekdal O
    J Pept Sci; 2004 Jan; 10(1):37-46. PubMed ID: 14959890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antitumour activity and specificity as a function of substitutions in the lipophilic sector of helical lactoferrin-derived peptide.
    Yang N; Lejon T; Rekdal O
    J Pept Sci; 2003 May; 9(5):300-11. PubMed ID: 12803496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced antitumour activity of 15-residue bovine lactoferricin derivatives containing bulky aromatic amino acids and lipophilic N-terminal modifications.
    Eliassen LT; Haug BE; Berge G; Rekdal O
    J Pept Sci; 2003 Aug; 9(8):510-7. PubMed ID: 12952392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimicrobial and cytolytic properties of the frog skin peptide, kassinatuerin-1 and its L- and D-lysine-substituted derivatives.
    Conlon JM; Abraham B; Galadari S; Knoop FC; Sonnevend A; Pál T
    Peptides; 2005 Nov; 26(11):2104-10. PubMed ID: 15885852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of charge and lipophilicity on the antibacterial activity of undecapeptides derived from bovine lactoferricin.
    Strøm MB; Rekdal O; Svendsen JS
    J Pept Sci; 2002 Jan; 8(1):36-43. PubMed ID: 11831560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of potent, non-toxic antimicrobial agents based upon the naturally occurring frog skin peptides, ascaphin-8 and peptide XT-7.
    Conlon JM; Galadari S; Raza H; Condamine E
    Chem Biol Drug Des; 2008 Jul; 72(1):58-64. PubMed ID: 18554256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial activity of short arginine- and tryptophan-rich peptides.
    Strøm MB; Rekdal O; Svendsen JS
    J Pept Sci; 2002 Aug; 8(8):431-7. PubMed ID: 12212806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational design of antimicrobial C3a analogues with enhanced effects against Staphylococci using an integrated structure and function-based approach.
    Pasupuleti M; Walse B; Svensson B; Malmsten M; Schmidtchen A
    Biochemistry; 2008 Sep; 47(35):9057-70. PubMed ID: 18690701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variation in antimicrobial activity of lactoferricin-derived peptides explained by structure modelling.
    Farnaud S; Patel A; Odell EW; Evans RW
    FEMS Microbiol Lett; 2004 Sep; 238(1):221-6. PubMed ID: 15336425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-activity relationships of de novo designed cyclic antimicrobial peptides based on gramicidin S.
    Lee DL; Hodges RS
    Biopolymers; 2003; 71(1):28-48. PubMed ID: 12712499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic porcine lactoferricin with a 20-residue peptide exhibits antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Candida albicans.
    Chen HL; Yen CC; Lu CY; Yu CH; Chen CM
    J Agric Food Chem; 2006 May; 54(9):3277-82. PubMed ID: 16637685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bulky aromatic amino acids increase the antibacterial activity of 15-residue bovine lactoferricin derivatives.
    Haug BE; Skar ML; Svendsen JS
    J Pept Sci; 2001 Aug; 7(8):425-32. PubMed ID: 11548058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of lactoferricin-derived peptides with LPS and antimicrobial activity.
    Farnaud S; Spiller C; Moriarty LC; Patel A; Gant V; Odell EW; Evans RW
    FEMS Microbiol Lett; 2004 Apr; 233(2):193-9. PubMed ID: 15063486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the effects of positive charge and hydrophobicity on the cell selectivity, mechanism of action and anti-inflammatory activity of a Trp-rich antimicrobial peptide indolicidin.
    Nan YH; Park KH; Park Y; Jeon YJ; Kim Y; Park IS; Hahm KS; Shin SY
    FEMS Microbiol Lett; 2009 Mar; 292(1):134-40. PubMed ID: 19191872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational design of peptides active against the gram positive bacteria Staphylococcus aureus.
    Landon C; Barbault F; Legrain M; Guenneugues M; Vovelle F
    Proteins; 2008 Jul; 72(1):229-39. PubMed ID: 18214975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monomeric analogues of halocidin.
    Doisy X; Ifrah D; Hansen PR
    Org Biomol Chem; 2004 Oct; 2(19):2757-62. PubMed ID: 15455147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural studies and model membrane interactions of two peptides derived from bovine lactoferricin.
    Nguyen LT; Schibli DJ; Vogel HJ
    J Pept Sci; 2005 Jul; 11(7):379-89. PubMed ID: 15635665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bactericidal effect of bovine lactoferrin, LFcin, LFampin and LFchimera on antibiotic-resistant Staphylococcus aureus and Escherichia coli.
    Flores-Villaseñor H; Canizalez-Román A; Reyes-Lopez M; Nazmi K; de la Garza M; Zazueta-Beltrán J; León-Sicairos N; Bolscher JG
    Biometals; 2010 Jun; 23(3):569-78. PubMed ID: 20195887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial activity of arginine- and tryptophan-rich hexapeptides: the effects of aromatic clusters, D-amino acid substitution and cyclization.
    Wessolowski A; Bienert M; Dathe M
    J Pept Res; 2004 Oct; 64(4):159-69. PubMed ID: 15357671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and analysis of structure-activity relationship of novel antimicrobial peptides derived from the conserved sequence of cecropin.
    Hao G; Shi YH; Han JH; Li QH; Tang YL; Le GW
    J Pept Sci; 2008 Mar; 14(3):290-8. PubMed ID: 17929330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.