These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 14960071)

  • 1. Verification of point-spread-function-based modeling of an extreme-ultraviolet photoresist.
    Naulleau PP
    Appl Opt; 2004 Feb; 43(4):788-92. PubMed ID: 14960071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resist Materials for Extreme Ultraviolet Lithography: Toward Low-Cost Single-Digit-Nanometer Patterning.
    Ashby PD; Olynick DL; Ogletree DF; Naulleau PP
    Adv Mater; 2015 Oct; 27(38):5813-9. PubMed ID: 26079187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity study of two high-throughput resolution metrics for photoresists.
    Anderson CN; Naulleau PP
    Appl Opt; 2008 Jan; 47(1):56-63. PubMed ID: 18157277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Sensitivity Resists for EUV Lithography: A Review of Material Design Strategies and Performance Results.
    Manouras T; Argitis P
    Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32823865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the Exposure Process in the Extreme Ultra Violet Lithography.
    Kim SK
    J Nanosci Nanotechnol; 2021 Aug; 21(8):4466-4469. PubMed ID: 33714346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of End-Cap Enabled Self-Immolative Photoresists For Extreme Ultraviolet Lithography.
    Deng J; Bailey S; Ai R; Delmonico A; Denbeaux G; Jiang S; Ober CK
    ACS Macro Lett; 2022 Sep; 11(9):1049-1054. PubMed ID: 35948019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resistless EUV lithography: Photon-induced oxide patterning on silicon.
    Tseng LT; Karadan P; Kazazis D; Constantinou PC; Stock TJZ; Curson NJ; Schofield SR; Muntwiler M; Aeppli G; Ekinci Y
    Sci Adv; 2023 Apr; 9(16):eadf5997. PubMed ID: 37075116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent Labeling to Investigate Nanopatterning Processes in Extreme Ultraviolet Lithography.
    Wu L; Hilbers MF; Lugier O; Thakur N; Vockenhuber M; Ekinci Y; Brouwer AM; Castellanos S
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51790-51798. PubMed ID: 34669380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modular Synthesis of Phthalaldehyde Derivatives Enabling Access to Photoacid Generator-Bound Self-Immolative Polymer Resists with Next-Generation Photolithographic Properties.
    Deng J; Bailey S; Jiang S; Ober CK
    J Am Chem Soc; 2022 Oct; 144(42):19508-19520. PubMed ID: 36208192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Oxygen on Thermal and Radiation-Induced Chemistries in a Model Organotin Photoresist.
    Frederick RT; Diulus JT; Hutchison DC; Nyman M; Herman GS
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4514-4522. PubMed ID: 30606004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fundamental understanding of chemical processes in extreme ultraviolet resist materials.
    Kostko O; Xu B; Ahmed M; Slaughter DS; Ogletree DF; Closser KD; Prendergast DG; Naulleau P; Olynick DL; Ashby PD; Liu Y; Hinsberg WD; Wallraff GM
    J Chem Phys; 2018 Oct; 149(15):154305. PubMed ID: 30342450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EUV photofragmentation study of hybrid nonchemically amplified resists containing antimony as an absorption enhancer.
    Moura CADS; Belmonte GK; Reddy PG; Gonslaves KE; Weibel DE
    RSC Adv; 2018 Mar; 8(20):10930-10938. PubMed ID: 35541508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extreme-ultraviolet lensless Fourier-transform holography.
    Lee SH; Naulleau P; Goldberg KA; Cho CH; Jeong S; Bokor J
    Appl Opt; 2001 Jun; 40(16):2655-61. PubMed ID: 18357280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Modeling of EUV Photoresist Revealing the Effect of Chain Conformation on Line-Edge Roughness Formation.
    Park J; Lee SG; Vesters Y; Severi J; Kim M; De Simone D; Oh HK; Hur SM
    Polymers (Basel); 2019 Nov; 11(12):. PubMed ID: 31766636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FT-IR study of a chemically amplified resist for X-ray lithography.
    Tan TL; Kudryashov VA; Tan BL
    Appl Spectrosc; 2003 Jul; 57(7):842-9. PubMed ID: 14658664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Line-Edge Roughness Stochastics for 5-nm Pattern Formation in the Extreme Ultraviolet Lithography.
    Kim SK
    J Nanosci Nanotechnol; 2019 Aug; 19(8):4657-4660. PubMed ID: 30913764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relevance of mask-roughness-induced printed line-edge roughness in recent and future extreme-ultraviolet lithography tests.
    Naulleau PP
    Appl Opt; 2004 Jul; 43(20):4025-32. PubMed ID: 15285094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast resist-activation dosimetry for extreme ultra-violet lithography.
    Heo J; Xu M; Maas D
    Opt Express; 2017 Mar; 25(5):4621-4631. PubMed ID: 28380733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absolute sensitivity calibration of extreme ultraviolet photoresists.
    Naulleau PP; Gullikson EM; Aquila A; George S; Niakoula D
    Opt Express; 2008 Jul; 16(15):11519-24. PubMed ID: 18648473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New Chemically Amplified Positive Photoresist with Phenolic Resin Modified by GMA and BOC Protection.
    Liu J; Kang W
    Polymers (Basel); 2023 Mar; 15(7):. PubMed ID: 37050212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.