These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 14960088)

  • 1. Fabrication and analysis of a low-loss in-fiber active polymer waveguide.
    Smith KH; Markos DJ; Ipson BL; Schultz SM; Selfridge RH; Barber JP; Campbell KJ; Monte TD; Dyott RB
    Appl Opt; 2004 Feb; 43(4):933-9. PubMed ID: 14960088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of electro-optic polymer modulators with low-loss fluorinated polymer waveguides.
    Ahn SW; Steier WH; Kuo YH; Oh MC; Lee HJ; Zhang C; Fetterman HR
    Opt Lett; 2002 Dec; 27(23):2109-11. PubMed ID: 18033457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thin-film lithium niobate electro-optic modulator on a D-shaped fiber.
    Wang M; Li J; Chen K; Hu Z
    Opt Express; 2020 Jul; 28(15):21464-21473. PubMed ID: 32752423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Deltan strip-loaded electro-optic polymer waveguide modulator with low insertion loss.
    DeRose CT; Himmelhuber R; Mathine D; Norwood RA; Luo J; Jen AK; Peyghambarian N
    Opt Express; 2009 Mar; 17(5):3316-21. PubMed ID: 19259168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized half-wave voltage and insertion loss in a strip-loaded waveguide electro-optic polymer modulator.
    Davis AA; Yaney PP; Grote JG
    Appl Opt; 2012 May; 51(15):2917-24. PubMed ID: 22614594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circular core single-mode polymer optical waveguide fabricated using the Mosquito method with low loss at 1310/1550 nm.
    Yasuhara K; Yu F; Ishigure T
    Opt Express; 2017 Apr; 25(8):8524-8533. PubMed ID: 28437931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of replacing an optical fiber core with polymer.
    Smith K; Selfridge R; Schultz S; Markos D; Ipson B
    Opt Express; 2004 Feb; 12(3):354-60. PubMed ID: 19474830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric-field sensors utilizing coupling between a D-fiber and an electro-optic polymer slab.
    Chadderdon S; Gibson R; Selfridge RH; Schultz SM; Wang WC; Forber R; Luo J; Jen AK
    Appl Opt; 2011 Jul; 50(20):3505-12. PubMed ID: 21743560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics and crosstalk of optical waveguides fabricated in polymethyl methacrylate polymer circuit board.
    Hamid HH; Rüter CE; Thiel DV; Fickenscher T
    Appl Opt; 2016 Nov; 55(32):9017-9021. PubMed ID: 27857284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous fabrication of optical channel waveguides and out-of-plane branching mirrors from a polymeric slab structure.
    Kagami M; Hasegawa K; Ito H
    Appl Opt; 1997 Oct; 36(30):7700-7. PubMed ID: 18264288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-range surface plasmon polariton waveguides embedded in fluorinated polymer.
    Jiang J; Callender CL; Jacob S; Noad JP; Chen S; Ballato J; Smith DW
    Appl Opt; 2008 Jul; 47(21):3892-900. PubMed ID: 18641759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vertical adiabatic transition between a silica planar waveguide and an electro-optic polymer fabricated with gray-scale lithography.
    Chang DH; Azfar T; Kim SK; Fetterman HR; Zhang C; Steier WH
    Opt Lett; 2003 Jun; 28(11):869-71. PubMed ID: 12816229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-printing polymer waveguide thermo-optic switches compatible with 650 and 532  nm visible signal wavelengths for plastic optical fiber systems.
    Wang C; Zhang D; Zhang X; Wang J; Cheng R; Wang X; Yi Y; Sun X; Wang F; Chen C
    Appl Opt; 2019 Sep; 58(25):6820-6826. PubMed ID: 31503648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-loss strip-loaded slot waveguides in silicon-on-insulator.
    Ding R; Baehr-Jones T; Kim WJ; Xiong X; Bojko R; Fedeli JM; Fournier M; Hochberg M
    Opt Express; 2010 Nov; 18(24):25061-7. PubMed ID: 21164851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of UV-bleached channel-waveguide performance in nonlinear optical polymer films.
    Feng W; Lin S; Hooker RB; Mickelson AR
    Appl Opt; 1995 Oct; 34(30):6885-91. PubMed ID: 21060549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electric field sensing with a hybrid polymer/glass fiber.
    Johnson EK; Kvavle JM; Selfridge RH; Schultz SM; Forber R; Wang W; Zang de Y
    Appl Opt; 2007 Oct; 46(28):6953-8. PubMed ID: 17906723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 90°-bent graded-index core polymer waveguide for a high-bandwidth-density VCSEL-based optical engine.
    Kohmu N; Ishii M; Hatai R; Ishigure T
    Opt Express; 2022 Jan; 30(3):4351-4364. PubMed ID: 35209673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer waveguides from alicyclic methacrylate copolymer fabricated by deep-UV exposure.
    Ichihashi Y; Henzi P; Bruendel M; Mohr J; Rabus DG
    Opt Lett; 2007 Feb; 32(4):379-81. PubMed ID: 17356659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid and Etch-Less Electrooptic Waveguide Modulator Based on Photo-Bleaching and Strain Induced Optical Waveguide Technique in Polymer.
    Kim R; Kang BM; Jeong WJ; Jung YJ; Park HR; Kim CD; So SY; Lee J; Park GC; Park Y
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1545-8. PubMed ID: 27433618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electro-optic sensor from high Q resonance between optical D-fiber and slab waveguide.
    Gibson R; Selfridge R; Schultz S; Wang W; Forber R
    Appl Opt; 2008 May; 47(13):2234-40. PubMed ID: 18449287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.