These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 14960374)
1. Hierarchical structural comparisons of bones from wild-type and liliput(dtc232) gene-mutated Zebrafish. Wang XM; Cui FZ; Ge J; Wang Y J Struct Biol; 2004 Mar; 145(3):236-45. PubMed ID: 14960374 [TBL] [Abstract][Full Text] [Related]
2. Variation of nanomechanical properties of bone by gene mutation in the zebrafish. Wang XM; Cui FZ; Ge J; Zhang Y; Ma C Biomaterials; 2002 Dec; 23(23):4557-63. PubMed ID: 12322976 [TBL] [Abstract][Full Text] [Related]
4. SEM and TEM study of the hierarchical structure of C57BL/6J and C3H/HeJ mice trabecular bone. Rubin MA; Rubin J; Jasiuk I Bone; 2004 Jul; 35(1):11-20. PubMed ID: 15207736 [TBL] [Abstract][Full Text] [Related]
5. Two types of mineral-related matrix vesicles in the bone mineralization of zebrafish. Yang L; Zhang Y; Cui FZ Biomed Mater; 2007 Mar; 2(1):21-5. PubMed ID: 18458429 [TBL] [Abstract][Full Text] [Related]
6. Nanostructure of the neurocentral growth plate: Insight from scanning small angle X-ray scattering, atomic force microscopy and scanning electron microscopy. Hauge Bünger M; Foss M; Erlacher K; Bruun Hovgaard M; Chevallier J; Langdahl B; Bünger C; Birkedal H; Besenbacher F; Skov Pedersen J Bone; 2006 Sep; 39(3):530-41. PubMed ID: 16769265 [TBL] [Abstract][Full Text] [Related]
7. Nanomechanical heterogeneity in the gap and overlap regions of type I collagen fibrils with implications for bone heterogeneity. Minary-Jolandan M; Yu MF Biomacromolecules; 2009 Sep; 10(9):2565-70. PubMed ID: 19694448 [TBL] [Abstract][Full Text] [Related]
8. Ultrastructural studies on the collagen of the marine sponge Chondrosia reniformis Nardo. Heinemann S; Ehrlich H; Douglas T; Heinemann C; Worch H; Schatton W; Hanke T Biomacromolecules; 2007 Nov; 8(11):3452-7. PubMed ID: 17944515 [TBL] [Abstract][Full Text] [Related]
9. Scanning electron microscopic analysis of the mineralization of type I collagen via a polymer-induced liquid-precursor (PILP) process. Olszta MJ; Douglas EP; Gower LB Calcif Tissue Int; 2003 May; 72(5):583-91. PubMed ID: 12616327 [TBL] [Abstract][Full Text] [Related]
11. Scanning electron microscopy studies of collagen, mineral and ground substance in human cortical bone. Frasca P; Harper RA; Katz JL Scan Electron Microsc; 1981; (Pt 3):339-46. PubMed ID: 7330582 [TBL] [Abstract][Full Text] [Related]
12. Transitional structures in lamellar bone. Ziv V; Sabanay I; Arad T; Traub W; Weiner S Microsc Res Tech; 1996 Feb; 33(2):203-13. PubMed ID: 8845519 [TBL] [Abstract][Full Text] [Related]
13. Peri-implant bone organization under immediate loading conditions: collagen fiber orientation and mineral density analyses in the minipig model. Traini T; Neugebauer J; Thams U; Zöller JE; Caputi S; Piattelli A Clin Implant Dent Relat Res; 2009 Mar; 11(1):41-51. PubMed ID: 18657155 [TBL] [Abstract][Full Text] [Related]
14. Structural investigations on native collagen type I fibrils using AFM. Strasser S; Zink A; Janko M; Heckl WM; Thalhammer S Biochem Biophys Res Commun; 2007 Mar; 354(1):27-32. PubMed ID: 17210119 [TBL] [Abstract][Full Text] [Related]
15. Mechanical properties of skeletal bone in gene-mutated stöpsel(dtl28d) and wild-type zebrafish (Danio rerio) measured by atomic force microscopy-based nanoindentation. Zhang Y; Cui FZ; Wang XM; Feng QL; Zhu XD Bone; 2002 Apr; 30(4):541-6. PubMed ID: 11934643 [TBL] [Abstract][Full Text] [Related]
16. Tendon crimps and peritendinous tissues responding to tensional forces. Franchi M; Quaranta M; De Pasquale V; Macciocca M; Orsini E; Trirè A; Ottani V; Ruggeri A Eur J Histochem; 2007; 51 Suppl 1():9-14. PubMed ID: 17703588 [TBL] [Abstract][Full Text] [Related]
17. Bone matrix like assemblies of collagen: from liquid crystals to gels and biomimetic materials. Giraud Guille MM; Mosser G; Helary C; Eglin D Micron; 2005; 36(7-8):602-8. PubMed ID: 16169238 [TBL] [Abstract][Full Text] [Related]
18. Mineralised tissues as nanomaterials: analysis by atomic force microscopy. Bozec L; de Groot J; Odlyha M; Nicholls B; Horton MA IEE Proc Nanobiotechnol; 2005 Oct; 152(5):183-6. PubMed ID: 16441178 [TBL] [Abstract][Full Text] [Related]
19. New observations of the hierarchical structure of human enamel, from nanoscale to microscale. Cui FZ; Ge J J Tissue Eng Regen Med; 2007; 1(3):185-91. PubMed ID: 18038410 [TBL] [Abstract][Full Text] [Related]
20. Structural changes in human type I collagen fibrils investigated by force spectroscopy. Graham JS; Vomund AN; Phillips CL; Grandbois M Exp Cell Res; 2004 Oct; 299(2):335-42. PubMed ID: 15350533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]