BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 14960587)

  • 1. Kinetic characterization of mutations found in propionic acidemia and methylcrotonylglycinuria: evidence for cooperativity in biotin carboxylase.
    Sloane V; Waldrop GL
    J Biol Chem; 2004 Apr; 279(16):15772-8. PubMed ID: 14960587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-directed mutagenesis of ATP binding residues of biotin carboxylase. Insight into the mechanism of catalysis.
    Sloane V; Blanchard CZ; Guillot F; Waldrop GL
    J Biol Chem; 2001 Jul; 276(27):24991-6. PubMed ID: 11346647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex formation and regulation of Escherichia coli acetyl-CoA carboxylase.
    Broussard TC; Price AE; Laborde SM; Waldrop GL
    Biochemistry; 2013 May; 52(19):3346-57. PubMed ID: 23594205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations at four active site residues of biotin carboxylase abolish substrate-induced synergism by biotin.
    Blanchard CZ; Lee YM; Frantom PA; Waldrop GL
    Biochemistry; 1999 Mar; 38(11):3393-400. PubMed ID: 10079084
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Shen J; Wu W; Wang K; Wu J; Liu B; Li C; Gong Z; Hong X; Fang H; Zhang X; Xu X
    mBio; 2024 May; 15(5):e0341423. PubMed ID: 38572988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Function of Escherichia coli biotin carboxylase requires catalytic activity of both subunits of the homodimer.
    Janiyani K; Bordelon T; Waldrop GL; Cronan JE
    J Biol Chem; 2001 Aug; 276(32):29864-70. PubMed ID: 11390406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of the alpha(6)beta(6) holoenzyme of propionyl-coenzyme A carboxylase.
    Huang CS; Sadre-Bazzaz K; Shen Y; Deng B; Zhou ZH; Tong L
    Nature; 2010 Aug; 466(7309):1001-5. PubMed ID: 20725044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The utility of molecular dynamics simulations for understanding site-directed mutagenesis of glycine residues in biotin carboxylase.
    Bordelon T; Nilsson Lill SO; Waldrop GL
    Proteins; 2009 Mar; 74(4):808-19. PubMed ID: 18704941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do cysteine 230 and lysine 238 of biotin carboxylase play a role in the activation of biotin?
    Levert KL; Lloyd RB; Waldrop GL
    Biochemistry; 2000 Apr; 39(14):4122-8. PubMed ID: 10747803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Analysis of Substrate, Reaction Intermediate, and Product Binding in Haemophilus influenzae Biotin Carboxylase.
    Broussard TC; Pakhomova S; Neau DB; Bonnot R; Waldrop GL
    Biochemistry; 2015 Jun; 54(24):3860-70. PubMed ID: 26020841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biotin domain peptide from the biotin carboxyl carrier protein of Escherichia coli acetyl-CoA carboxylase causes a marked increase in the catalytic efficiency of biotin carboxylase and carboxyltransferase relative to free biotin.
    Blanchard CZ; Chapman-Smith A; Wallace JC; Waldrop GL
    J Biol Chem; 1999 Nov; 274(45):31767-9. PubMed ID: 10542197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural evidence for substrate-induced synergism and half-sites reactivity in biotin carboxylase.
    Mochalkin I; Miller JR; Evdokimov A; Lightle S; Yan C; Stover CK; Waldrop GL
    Protein Sci; 2008 Oct; 17(10):1706-18. PubMed ID: 18725455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The biotin enzyme family: conserved structural motifs and domain rearrangements.
    Jitrapakdee S; Wallace JC
    Curr Protein Pept Sci; 2003 Jun; 4(3):217-29. PubMed ID: 12769720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and function of biotin-dependent carboxylases.
    Tong L
    Cell Mol Life Sci; 2013 Mar; 70(5):863-91. PubMed ID: 22869039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early evolution of the biotin-dependent carboxylase family.
    Lombard J; Moreira D
    BMC Evol Biol; 2011 Aug; 11():232. PubMed ID: 21827699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The three-dimensional structure of the biotin carboxylase-biotin carboxyl carrier protein complex of E. coli acetyl-CoA carboxylase.
    Broussard TC; Kobe MJ; Pakhomova S; Neau DB; Price AE; Champion TS; Waldrop GL
    Structure; 2013 Apr; 21(4):650-7. PubMed ID: 23499019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between the biotin carboxyl carrier domain and the biotin carboxylase domain in pyruvate carboxylase from Rhizobium etli.
    Lietzan AD; Menefee AL; Zeczycki TN; Kumar S; Attwood PV; Wallace JC; Cleland WW; St Maurice M
    Biochemistry; 2011 Nov; 50(45):9708-23. PubMed ID: 21958016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of biotin carboxylase by a reaction intermediate analog: implications for the kinetic mechanism.
    Blanchard CZ; Amspacher D; Strongin R; Waldrop GL
    Biochem Biophys Res Commun; 1999 Dec; 266(2):466-71. PubMed ID: 10600526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Movement of the biotin carboxylase B-domain as a result of ATP binding.
    Thoden JB; Blanchard CZ; Holden HM; Waldrop GL
    J Biol Chem; 2000 May; 275(21):16183-90. PubMed ID: 10821865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The C-terminal domain of biotin protein ligase from E. coli is required for catalytic activity.
    Chapman-Smith A; Mulhern TD; Whelan F; Cronan JE; Wallace JC
    Protein Sci; 2001 Dec; 10(12):2608-17. PubMed ID: 11714929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.