These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 14960616)

  • 1. Neuronal activity and adenylyl cyclase in environment-dependent plasticity of axonal outgrowth in Drosophila.
    Zhong Y; Wu CF
    J Neurosci; 2004 Feb; 24(6):1439-45. PubMed ID: 14960616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic plasticity in Drosophila memory and hyperexcitable mutants: role of cAMP cascade.
    Zhong Y; Budnik V; Wu CF
    J Neurosci; 1992 Feb; 12(2):644-51. PubMed ID: 1371316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic adenosine monophosphate metabolism in synaptic growth, strength, and precision: neural and behavioral phenotype-specific counterbalancing effects between dnc phosphodiesterase and rut adenylyl cyclase mutations.
    Ueda A; Wu CF
    J Neurogenet; 2012 Mar; 26(1):64-81. PubMed ID: 22380612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of rut adenylyl cyclase in the ensemble regulation of presynaptic terminal excitability: reduced synaptic strength and precision in a Drosophila memory mutant.
    Ueda A; Wu CF
    J Neurogenet; 2009; 23(1-2):185-99. PubMed ID: 19101836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retrograde BMP signaling at the synapse: a permissive signal for synapse maturation and activity-dependent plasticity.
    Berke B; Wittnam J; McNeill E; Van Vactor DL; Keshishian H
    J Neurosci; 2013 Nov; 33(45):17937-50. PubMed ID: 24198381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholesterol is required for activity-dependent synaptic growth.
    Shaheen A; Richter Gorey CL; Sghaier A; Dason JS
    J Cell Sci; 2023 Nov; 136(22):. PubMed ID: 37902091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered gene regulation and synaptic morphology in Drosophila learning and memory mutants.
    Guan Z; Buhl LK; Quinn WG; Littleton JT
    Learn Mem; 2011; 18(4):191-206. PubMed ID: 21422168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal rescue of memory dysfunction in Drosophila.
    McGuire SE; Le PT; Osborn AJ; Matsumoto K; Davis RL
    Science; 2003 Dec; 302(5651):1765-8. PubMed ID: 14657498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pre- and post-synaptic mechanisms of synaptic strength homeostasis revealed by slowpoke and shaker K+ channel mutations in Drosophila.
    Lee J; Ueda A; Wu CF
    Neuroscience; 2008 Jul; 154(4):1283-96. PubMed ID: 18539401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological plasticity of motor axons in Drosophila mutants with altered excitability.
    Budnik V; Zhong Y; Wu CF
    J Neurosci; 1990 Nov; 10(11):3754-68. PubMed ID: 1700086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Notch signaling is required for activity-dependent synaptic plasticity at the Drosophila neuromuscular junction.
    de Bivort BL; Guo HF; Zhong Y
    J Neurogenet; 2009; 23(4):395-404. PubMed ID: 19863270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered nerve terminal arborization and synaptic transmission in Drosophila mutants of cell adhesion molecule fasciclin I.
    Zhong Y; Shanley J
    J Neurosci; 1995 Oct; 15(10):6679-87. PubMed ID: 7472428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. latheo, a Drosophila gene involved in learning, regulates functional synaptic plasticity.
    Rohrbough J; Pinto S; Mihalek RM; Tully T; Broadie K
    Neuron; 1999 May; 23(1):55-70. PubMed ID: 10402193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of cAMP cascade in synaptic stability and plasticity: ultrastructural and physiological analyses of individual synaptic boutons in Drosophila memory mutants.
    Renger JJ; Ueda A; Atwood HL; Govind CK; Wu CF
    J Neurosci; 2000 Jun; 20(11):3980-92. PubMed ID: 10818133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic ultrastructure in nerve terminals of Drosophila larvae overexpressing the learning gene dunce.
    Shayan AJ; Atwood HL
    J Neurobiol; 2000 Apr; 43(1):89-97. PubMed ID: 10756069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization of a short-term memory in Drosophila.
    Zars T; Fischer M; Schulz R; Heisenberg M
    Science; 2000 Apr; 288(5466):672-5. PubMed ID: 10784450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonreciprocal homeostatic compensation in
    Kim EZ; Vienne J; Rosbash M; Griffith LC
    J Neurophysiol; 2017 Jun; 117(6):2125-2136. PubMed ID: 28298298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Na
    Rossano AJ; Kato A; Minard KI; Romero MF; Macleod GT
    J Physiol; 2017 Feb; 595(3):805-824. PubMed ID: 27641622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortactin Is a Regulator of Activity-Dependent Synaptic Plasticity Controlled by Wingless.
    Alicea D; Perez M; Maldonado C; Dominicci-Cotto C; Marie B
    J Neurosci; 2017 Feb; 37(8):2203-2215. PubMed ID: 28123080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A neurofibromatosis-1-regulated pathway is required for learning in Drosophila.
    Guo HF; Tong J; Hannan F; Luo L; Zhong Y
    Nature; 2000 Feb; 403(6772):895-8. PubMed ID: 10706287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.