BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

623 related articles for article (PubMed ID: 14960620)

  • 1. Novel features of cryptochrome-mediated photoreception in the brain circadian clock of Drosophila.
    Klarsfeld A; Malpel S; Michard-Vanhée C; Picot M; Chélot E; Rouyer F
    J Neurosci; 2004 Feb; 24(6):1468-77. PubMed ID: 14960620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circadian photoreception in Drosophila: functions of cryptochrome in peripheral and central clocks.
    Ivanchenko M; Stanewsky R; Giebultowicz JM
    J Biol Rhythms; 2001 Jun; 16(3):205-15. PubMed ID: 11407780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A role for blind DN2 clock neurons in temperature entrainment of the Drosophila larval brain.
    Picot M; Klarsfeld A; Chélot E; Malpel S; Rouyer F
    J Neurosci; 2009 Jul; 29(26):8312-20. PubMed ID: 19571122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The blue-light photoreceptor CRYPTOCHROME is expressed in a subset of circadian oscillator neurons in the Drosophila CNS.
    Benito J; Houl JH; Roman GW; Hardin PE
    J Biol Rhythms; 2008 Aug; 23(4):296-307. PubMed ID: 18663237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A self-sustaining, light-entrainable circadian oscillator in the Drosophila brain.
    Veleri S; Brandes C; Helfrich-Förster C; Hall JC; Stanewsky R
    Curr Biol; 2003 Oct; 13(20):1758-67. PubMed ID: 14561400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drosophila CRY is a deep brain circadian photoreceptor.
    Emery P; Stanewsky R; Helfrich-Förster C; Emery-Le M; Hall JC; Rosbash M
    Neuron; 2000 May; 26(2):493-504. PubMed ID: 10839367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drosophila cryb mutation reveals two circadian clocks that drive locomotor rhythm and have different responsiveness to light.
    Yoshii T; Funada Y; Ibuki-Ishibashi T; Matsumoto A; Tanimura T; Tomioka K
    J Insect Physiol; 2004 Jun; 50(6):479-88. PubMed ID: 15183277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light activates output from evening neurons and inhibits output from morning neurons in the Drosophila circadian clock.
    Picot M; Cusumano P; Klarsfeld A; Ueda R; Rouyer F
    PLoS Biol; 2007 Nov; 5(11):e315. PubMed ID: 18044989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying specific light inputs for each subgroup of brain clock neurons in Drosophila larvae.
    Klarsfeld A; Picot M; Vias C; Chélot E; Rouyer F
    J Neurosci; 2011 Nov; 31(48):17406-15. PubMed ID: 22131402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new role for cryptochrome in a Drosophila circadian oscillator.
    Krishnan B; Levine JD; Lynch MK; Dowse HB; Funes P; Hall JC; Hardin PE; Dryer SE
    Nature; 2001 May; 411(6835):313-7. PubMed ID: 11357134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain.
    Grima B; Chélot E; Xia R; Rouyer F
    Nature; 2004 Oct; 431(7010):869-73. PubMed ID: 15483616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryptochrome-positive and -negative clock neurons in Drosophila entrain differentially to light and temperature.
    Yoshii T; Hermann C; Helfrich-Förster C
    J Biol Rhythms; 2010 Dec; 25(6):387-98. PubMed ID: 21135155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hofbauer-Buchner eyelet affects circadian photosensitivity and coordinates TIM and PER expression in Drosophila clock neurons.
    Veleri S; Rieger D; Helfrich-Förster C; Stanewsky R
    J Biol Rhythms; 2007 Feb; 22(1):29-42. PubMed ID: 17229923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Neural Network Underlying Circadian Entrainment and Photoperiodic Adjustment of Sleep and Activity in Drosophila.
    Schlichting M; Menegazzi P; Lelito KR; Yao Z; Buhl E; Dalla Benetta E; Bahle A; Denike J; Hodge JJ; Helfrich-Förster C; Shafer OT
    J Neurosci; 2016 Aug; 36(35):9084-96. PubMed ID: 27581451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural Network Interactions Modulate CRY-Dependent Photoresponses in
    Lamba P; Foley LE; Emery P
    J Neurosci; 2018 Jul; 38(27):6161-6171. PubMed ID: 29875268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception.
    Busza A; Emery-Le M; Rosbash M; Emery P
    Science; 2004 Jun; 304(5676):1503-6. PubMed ID: 15178801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entrainment of Drosophila circadian clock to green and yellow light by Rh1, Rh5, Rh6 and CRY.
    Hanai S; Ishida N
    Neuroreport; 2009 May; 20(8):755-8. PubMed ID: 19398933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian synchronization and rhythmicity in larval photoperception-defective mutants of Drosophila.
    Malpel S; Klarsfeld A; Rouyer F
    J Biol Rhythms; 2004 Feb; 19(1):10-21. PubMed ID: 14964700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CLOCK expression identifies developing circadian oscillator neurons in the brains of Drosophila embryos.
    Houl JH; Ng F; Taylor P; Hardin PE
    BMC Neurosci; 2008 Dec; 9():119. PubMed ID: 19094242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunoreactivities to three circadian clock proteins in two ground crickets suggest interspecific diversity of the circadian clock structure.
    Shao QM; Sehadová H; Ichihara N; Sehnal F; Takeda M
    J Biol Rhythms; 2006 Apr; 21(2):118-31. PubMed ID: 16603676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.