BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 14960723)

  • 1. Analysis and recognition of 5' UTR intron splice sites in human pre-mRNA.
    Eden E; Brunak S
    Nucleic Acids Res; 2004; 32(3):1131-42. PubMed ID: 14960723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information.
    Hebsgaard SM; Korning PG; Tolstrup N; Engelbrecht J; Rouzé P; Brunak S
    Nucleic Acids Res; 1996 Sep; 24(17):3439-52. PubMed ID: 8811101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A shared RNA-binding site in the Pet54 protein is required for translational activation and group I intron splicing in yeast mitochondria.
    Kaspar BJ; Bifano AL; Caprara MG
    Nucleic Acids Res; 2008 May; 36(9):2958-68. PubMed ID: 18388132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Logitlinear models for the prediction of splice sites in plant pre-mRNA sequences.
    Kleffe J; Hermann K; Vahrson W; Wittig B; Brendel V
    Nucleic Acids Res; 1996 Dec; 24(23):4709-18. PubMed ID: 8972857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of human mRNA donor and acceptor sites from the DNA sequence.
    Brunak S; Engelbrecht J; Knudsen S
    J Mol Biol; 1991 Jul; 220(1):49-65. PubMed ID: 2067018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic modeling of donor splice site recognition in pre-mRNA.
    Garland JA; Aalberts DP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 1):041903. PubMed ID: 15169039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human GC-AG alternative intron isoforms with weak donor sites show enhanced consensus at acceptor exon positions.
    Thanaraj TA; Clark F
    Nucleic Acids Res; 2001 Jun; 29(12):2581-93. PubMed ID: 11410667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The architecture of pre-mRNAs affects mechanisms of splice-site pairing.
    Fox-Walsh KL; Dou Y; Lam BJ; Hung SP; Baldi PF; Hertel KJ
    Proc Natl Acad Sci U S A; 2005 Nov; 102(45):16176-81. PubMed ID: 16260721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The 5' leader of plant PgiC has an intron: the leader shows both the loss and maintenance of constraints compared with introns and exons in the coding region.
    Gottlieb LD; Ford VS
    Mol Biol Evol; 2002 Sep; 19(9):1613-23. PubMed ID: 12200488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational discovery of human coding and non-coding transcripts with conserved splice sites.
    Rose D; Hiller M; Schutt K; Hackermüller J; Backofen R; Stadler PF
    Bioinformatics; 2011 Jul; 27(14):1894-900. PubMed ID: 21622663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of driver non-coding splice-site-creating mutations in cancer.
    Cao S; Zhou DC; Oh C; Jayasinghe RG; Zhao Y; Yoon CJ; Wyczalkowski MA; Bailey MH; Tsou T; Gao Q; Malone A; Reynolds S; Shmulevich I; Wendl MC; Chen F; Ding L
    Nat Commun; 2020 Nov; 11(1):5573. PubMed ID: 33149122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic assembly of human pre-spliceosomes across introns and exons.
    Braun JE; Friedman LJ; Gelles J; Moore MJ
    Elife; 2018 Jun; 7():. PubMed ID: 29932423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinformatic analyses of mammalian 5'-UTR sequence properties of mRNAs predicts alternative translation initiation sites.
    Wegrzyn JL; Drudge TM; Valafar F; Hook V
    BMC Bioinformatics; 2008 May; 9():232. PubMed ID: 18466625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary conservation of UTR intron boundaries in Cryptococcus.
    Roy SW; Penny D; Neafsey DE
    Mol Biol Evol; 2007 May; 24(5):1140-8. PubMed ID: 17374879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Categorization and characterization of transcript-confirmed constitutively and alternatively spliced introns and exons from human.
    Clark F; Thanaraj TA
    Hum Mol Genet; 2002 Feb; 11(4):451-64. PubMed ID: 11854178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing.
    Krawczak M; Thomas NS; Hundrieser B; Mort M; Wittig M; Hampe J; Cooper DN
    Hum Mutat; 2007 Feb; 28(2):150-8. PubMed ID: 17001642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compensatory relationship between splice sites and exonic splicing signals depending on the length of vertebrate introns.
    Dewey CN; Rogozin IB; Koonin EV
    BMC Genomics; 2006 Dec; 7():311. PubMed ID: 17156453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of splice sites in plant pre-mRNA from sequence properties.
    Brendel V; Kleffe J; Carle-Urioste JC; Walbot V
    J Mol Biol; 1998 Feb; 276(1):85-104. PubMed ID: 9514728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Splicing of human immunodeficiency virus RNA is position-dependent suggesting sequential removal of introns from the 5' end.
    Bohne J; Wodrich H; Kräusslich HG
    Nucleic Acids Res; 2005; 33(3):825-37. PubMed ID: 15701754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Splicing of 5' introns dictates alternative splice selection of acetylcholinesterase pre-mRNA and specific expression during myogenesis.
    Luo ZD; Camp S; Mutero A; Taylor P
    J Biol Chem; 1998 Oct; 273(43):28486-95. PubMed ID: 9774478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.