These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 14961566)

  • 1. Quantitative morphological analysis of the motoneurons innervating muscles involved in tongue movements of the frog Rana esculenta.
    Birinyi A; Szekely G; Csapó K; Matesz C
    J Comp Neurol; 2004 Mar; 470(4):409-21. PubMed ID: 14961566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quantitative analysis of the geometry of cat motoneurons innervating neck and shoulder muscles.
    Rose PK; Keirstead SA; Vanner SJ
    J Comp Neurol; 1985 Sep; 239(1):89-107. PubMed ID: 4044931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the dendritic geometry of brain stem motoneurons with different functions using multivariant statistical techniques in the frog.
    Matesz C; Birinyi A; Kothalawala DS; Székely G
    Neuroscience; 1995 Apr; 65(4):1129-44. PubMed ID: 7617167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphology of lumbar motoneurons innervating hindlimb muscles in the turtle Pseudemys scripta elegans: an intracellular horseradish peroxidase study.
    Ruigrok TJ; Crowe A; ten Donkelaar HJ
    J Comp Neurol; 1984 Dec; 230(3):413-25. PubMed ID: 6520242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crossing dendrites of the hypoglossal motoneurons: possible morphological substrate of coordinated and synchronized tongue movements of the frog, Rana esculenta.
    Bácskai T; Veress G; Halasi G; Matesz C
    Brain Res; 2010 Feb; 1313():89-96. PubMed ID: 19962369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brainstem circuits underlying the prey-catching behavior of the frog.
    Matesz K; Kecskes S; Bácskai T; Rácz É; Birinyi A
    Brain Behav Evol; 2014; 83(2):104-11. PubMed ID: 24776991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organization of the motor centres for the innervation of different muscles of the tongue: a neuromorphological study in the frog.
    Matesz C; Schmidt I; Szabo L; Birinyi A; Székely G
    Eur J Morphol; 1999 Apr; 37(2-3):190-4. PubMed ID: 10342455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dendritic distribution of motoneurons innervating the three heads of the trapezius muscle in the cat.
    Vanner SJ; Rose PK
    J Comp Neurol; 1984 Jun; 226(1):96-110. PubMed ID: 6736298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural circuits underlying tongue movements for the prey-catching behavior in frog: distribution of primary afferent terminals on motoneurons supplying the tongue.
    Kecskes S; Matesz C; Gaál B; Birinyi A
    Brain Struct Funct; 2016 Apr; 221(3):1533-53. PubMed ID: 25575900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organization of last-order premotor interneurons related to the protraction of tongue in the frog, Rana esculenta.
    Rácz E; Bácskai T; Szabo G; Székely G; Matesz C
    Brain Res; 2008 Jan; 1187():111-5. PubMed ID: 18036575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dendrite distribution of identified motoneurons in the lumbar spinal cord of the turtle Pseudemys scripta elegans.
    Ruigrok TJ; Crowe A; ten Donkelaar HJ
    J Comp Neurol; 1985 Aug; 238(3):275-85. PubMed ID: 4044916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dendritic architecture of hypoglossal motoneurons projecting to extrinsic tongue musculature in the rat.
    Altschuler SM; Bao X; Miselis RR
    J Comp Neurol; 1994 Apr; 342(4):538-50. PubMed ID: 8040364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dendritic distribution of splenius motoneurons in the cat: comparison of motoneurons innervating different regions of the muscle.
    Keirstead SA; Rose PK
    J Comp Neurol; 1983 Sep; 219(3):273-84. PubMed ID: 6194190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motoneurons differ in size and peripheral target in the trigeminal and facial nuclear complex of the frog.
    Matesz C; Birinyi A; Hevessy Z
    J Hirnforsch; 1994; 35(1):67-70. PubMed ID: 8021457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motoneurons of the flight power muscles of the blowfly Calliphora erythrocephala: structures and mutual dye coupling.
    Schlurmann M; Hausen K
    J Comp Neurol; 2007 Jan; 500(3):448-64. PubMed ID: 17120285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of the submentalis muscle to feeding mechanics in the leopard frog, Rana pipiens.
    Wolff JB; Lee MJ; Anderson CW
    J Exp Zool A Comp Exp Biol; 2004 Aug; 301(8):666-73. PubMed ID: 15286946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the topology and growth rules of motoneuronal dendrites.
    Dityatev AE; Chmykhova NM; Studer L; Karamian OA; Kozhanov VM; Clamann HP
    J Comp Neurol; 1995 Dec; 363(3):505-16. PubMed ID: 8847414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Somato-dendritic morphology and dendritic signal transfer properties differentiate between fore- and hindlimb innervating motoneurons in the frog Rana esculenta.
    Stelescu A; Sümegi J; Wéber I; Birinyi A; Wolf E
    BMC Neurosci; 2012 Jun; 13():68. PubMed ID: 22708833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution and morphology of motoneurons innervating different muscle fiber types in an amphibian muscle complex.
    Kim J; Hetherington TE
    J Morphol; 1993 Jun; 216(3):327-38. PubMed ID: 8315651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor pool organization of the external gastrocnemius muscle in the turtle, Pseudemys (Trachemys) scripta elegans.
    Callister RJ; Donnelly RP; Pierce PA; Stuart DG
    J Morphol; 1996 Feb; 227(2):171-83. PubMed ID: 8568906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.