BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 14962122)

  • 1. Efficiency of chlorocatechol metabolism in natural and constructed chlorobenzoate and chlorobiphenyl degraders.
    Brenner V; Rucká L; Totevová S; Tømeraas K; Demnerová K
    J Appl Microbiol; 2004; 96(3):430-6. PubMed ID: 14962122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of chlorocatechol meta cleavage products by a pseudomonad during metabolism of monochlorobiphenyls.
    Arensdorf JJ; Focht DD
    Appl Environ Microbiol; 1994 Aug; 60(8):2884-9. PubMed ID: 7521996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A meta cleavage pathway for 4-chlorobenzoate, an intermediate in the metabolism of 4-chlorobiphenyl by Pseudomonas cepacia P166.
    Arensdorf JJ; Focht DD
    Appl Environ Microbiol; 1995 Feb; 61(2):443-7. PubMed ID: 7574580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The chlorocatechol degradative genes, tfdT-CDEF, of Burkholderia sp. strain NK8 are involved in chlorobenzoate degradation and induced by chlorobenzoates and chlorocatechols.
    Liu S; Ogawa N; Miyashita K
    Gene; 2001 May; 268(1-2):207-14. PubMed ID: 11368916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic exchange in soil between introduced chlorobenzoate degraders and indigenous biphenyl degraders.
    Focht DD; Searles DB; Koh SC
    Appl Environ Microbiol; 1996 Oct; 62(10):3910-3. PubMed ID: 8837452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of chlorobenzoate degraders isolated from polychlorinated biphenyl-contaminated soil and sediment in the Czech Republic.
    Pavlû L; Vosáhlová J; Klierová H; Prouza M; Demnerová K; Brenner V
    J Appl Microbiol; 1999 Sep; 87(3):381-6. PubMed ID: 10540240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of chlorobenzoates on the utilisation of chlorobiphenyls and chlorobenzoate mixtures by chlorobiphenyl/chlorobenzoate-mineralising hybrid bacterial strains.
    Stratford J; Wright MA; Reineke W; Mokross H; Havel J; Knowles CJ; Robinson GK
    Arch Microbiol; 1996 Mar; 165(3):213-8. PubMed ID: 8599540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic construction of PCB degraders.
    Brenner V; Arensdorf JJ; Focht DD
    Biodegradation; 1994 Dec; 5(3-4):359-77. PubMed ID: 7765843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TOL plasmid pWW0 in constructed halobenzoate-degrading Pseudomonas strains: prevention of meta pathway.
    Reineke W; Jeenes DJ; Williams PA; Knackmuss HJ
    J Bacteriol; 1982 Apr; 150(1):195-201. PubMed ID: 7061393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of polychlorinated biphenyl-degrading bacteria isolated from contaminated sites in Czechia.
    Totevová S; Prouza M; Burkhard J; Demnerová K; Brenner V
    Folia Microbiol (Praha); 2002; 47(3):247-54. PubMed ID: 12094733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological degradation of 4-chlorobenzoic acid by a PCB-metabolizing bacterium through a pathway not involving (chloro)catechol.
    Adebusoye SA
    Biodegradation; 2017 Feb; 28(1):37-51. PubMed ID: 27766437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced mineralization of polychlorinated biphenyls in soil inoculated with chlorobenzoate-degrading bacteria.
    Hickey WJ; Searles DB; Focht DD
    Appl Environ Microbiol; 1993 Apr; 59(4):1194-200. PubMed ID: 8476293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of 2-chlorobenzoic acid in Pseudomonas stutzeri.
    Kozlovsky SA; Kunc F
    Folia Microbiol (Praha); 1995; 40(5):454-6. PubMed ID: 8846991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilization of 3-chloro-2-methylbenzoic acid by Pseudomonas cepacia MB2 through the meta fission pathway.
    Higson FK; Focht DD
    Appl Environ Microbiol; 1992 Aug; 58(8):2501-4. PubMed ID: 1381172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An attempt to control the polychlorocatechol pigment production during 3-chlorobenzoate aerobic co-metabolism in growing-cell batch culture.
    Fava F; Di Gioia D; Bignami A; Marchetti L
    Chemosphere; 1994 Jul; 29(1):39-46. PubMed ID: 8044632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel insights into the interplay between peripheral reactions encoded by xyl genes and the chlorocatechol pathway encoded by tfd genes for the degradation of chlorobenzoates by Ralstonia eutropha JMP134.
    Ledger T; Pieper DH; Pérez-Pantoja D; González B
    Microbiology (Reading); 2002 Nov; 148(Pt 11):3431-3440. PubMed ID: 12427935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of mono-, di-, and trihalogenated benzoic acids by Pseudomonas aeruginosa JB2.
    Hickey WJ; Focht DD
    Appl Environ Microbiol; 1990 Dec; 56(12):3842-50. PubMed ID: 2128010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alginate beads as a storage, delivery and containment system for genetically modified PCB degrader and PCB biosensor derivatives of Pseudomonas fluorescens F113.
    Power B; Liu X; Germaine KJ; Ryan D; Brazil D; Dowling DN
    J Appl Microbiol; 2011 May; 110(5):1351-8. PubMed ID: 21395945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmid specifying total degradation of 3-chlorobenzoate by a modified ortho pathway.
    Chatterjee DK; Kellogg ST; Hamada S; Chakrabarty AM
    J Bacteriol; 1981 May; 146(2):639-46. PubMed ID: 7217013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of aroclor 1242 dechlorination products in sediments by Burkholderia xenovorans LB400(ohb) and Rhodococcus sp. strain RHA1(fcb).
    Rodrigues JL; Kachel CA; Aiello MR; Quensen JF; Maltseva OV; Tsoi TV; Tiedje JM
    Appl Environ Microbiol; 2006 Apr; 72(4):2476-82. PubMed ID: 16597946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.