BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 14962122)

  • 21. Hybrid pathway for chlorobenzoate metabolism in Pseudomonas sp. B13 derivatives.
    Reineke W; Knackmuss HJ
    J Bacteriol; 1980 May; 142(2):467-73. PubMed ID: 7380800
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of catechol- and chlorocatechol-degrading activity in the ortho-chlorinated benzoic acid-degrading Pseudomonas sp. CPE2 strain.
    Di Gioia D; Fava F; Baldoni F; Marchetti L
    Res Microbiol; 1998 May; 149(5):339-48. PubMed ID: 9766234
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Degradation of aroclor 1242 dechlorination products in sediments by Burkholderia xenovorans LB400(ohb) and Rhodococcus sp. strain RHA1(fcb).
    Rodrigues JL; Kachel CA; Aiello MR; Quensen JF; Maltseva OV; Tsoi TV; Tiedje JM
    Appl Environ Microbiol; 2006 Apr; 72(4):2476-82. PubMed ID: 16597946
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The chlorocatechol-catabolic transposon Tn5707 of Alcaligenes eutrophus NH9, carrying a gene cluster highly homologous to that in the 1,2,4-trichlorobenzene-degrading bacterium Pseudomonas sp. strain P51, confers the ability to grow on 3-chlorobenzoate.
    Ogawa N; Miyashita K
    Appl Environ Microbiol; 1999 Feb; 65(2):724-31. PubMed ID: 9925607
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of a strain for efficient degradation of polychlorinated biphenyls by patchwork assembly of degradation pathways.
    Ohmori T; Morita H; Tanaka M; Miyauchi K; Kasai D; Furukawa K; Miyashita K; Ogawa N; Masai E; Fukuda M
    J Biosci Bioeng; 2011 Apr; 111(4):437-42. PubMed ID: 21310654
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 2-Chlorobenzoate biodegradation by recombinant Burkholderia cepacia under hypoxic conditions in a membrane bioreactor.
    Urgun-Demirtas M; Stark B; Pagilla K
    Water Environ Res; 2005; 77(5):511-8. PubMed ID: 16274085
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of substrate concentration on the cometabolism of m-chlorobenzoate by Pseudomonas fluorescens.
    Johnson LM; Williams FD
    Bull Environ Contam Toxicol; 1982 Oct; 29(4):447-54. PubMed ID: 6816319
    [No Abstract]   [Full Text] [Related]  

  • 28. Development of a Rhodococcus recombinant strain for degradation of products from anaerobic dechlorination of PCBs.
    Rodrigues JL; Maltseva OV; Tsoi TV; Helton RR; Quensen JF; Fukuda M; Tiedje JM
    Environ Sci Technol; 2001 Feb; 35(4):663-8. PubMed ID: 11349275
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptional activation of the chlorocatechol degradative genes of Ralstonia eutropha NH9.
    Ogawa N; McFall SM; Klem TJ; Miyashita K; Chakrabarty AM
    J Bacteriol; 1999 Nov; 181(21):6697-705. PubMed ID: 10542171
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Induction of the halobenzoate catabolic pathway and cometabolism of ortho-chlorobenzoates in Pseudomonas aeruginosa 142 grown on glucose-supplemented media.
    Corbella ME; Garrido-Pertierra A; Puyet A
    Biodegradation; 2001; 12(3):149-57. PubMed ID: 11826896
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Variation in chlorobenzoate catabolism by Pseudomonas putida P111 as a consequence of genetic alterations.
    Brenner V; Hernandez BS; Focht DD
    Appl Environ Microbiol; 1993 Sep; 59(9):2790-4. PubMed ID: 8215353
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pathways for 3-chloro- and 4-chlorobenzoate degradation in Pseudomonas aeruginosa 3mT.
    Ajithkumar PV; Kunhi AA
    Biodegradation; 2000; 11(4):247-61. PubMed ID: 11432583
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pseudomonas aeruginosa 142 uses a three-component ortho-halobenzoate 1,2-dioxygenase for metabolism of 2,4-dichloro- and 2-chlorobenzoate.
    Romanov V; Hausinger RP
    J Bacteriol; 1994 Jun; 176(11):3368-74. PubMed ID: 8195093
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biosynthesis and cytoplasmic accumulation of a chlorinated catechol pigment during 3-chlorobenzoate aerobic co-metabolism in Pseudomonas fluorescens.
    Fava F; Di Gioia D; Romagnoli C; Marchetti L; Mares D
    Arch Microbiol; 1993; 160(5):350-7. PubMed ID: 8257280
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolism of 3-chlorobenzoate by a Pseudomonas (diff) spp.
    Vora KA; Modi VV
    Indian J Exp Biol; 1989 Nov; 27(11):967-71. PubMed ID: 2620936
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation and preliminary characterization of a 3-chlorobenzoate degrading bacteria.
    Qi Y; Zhao L; Olusheyi OZ; Tan X
    J Environ Sci (China); 2007; 19(3):332-7. PubMed ID: 17918596
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diversity of biphenyl degraders in a chlorobenzene polluted aquifer.
    Abraham WR; Wenderoth DF; Glässer W
    Chemosphere; 2005 Jan; 58(4):529-33. PubMed ID: 15620745
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microbial metabolism of chlorosalicylates: accelerated evolution by natural genetic exchange.
    Rubio MA; Engesser KH; Knackmuss HJ
    Arch Microbiol; 1986 Jul; 145(2):116-22. PubMed ID: 3767567
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The influence of physicochemical effects on the microbial degradation of chlorinated biphenyls.
    Havel J; Reineke W
    Appl Microbiol Biotechnol; 1995 Oct; 43(5):914-9. PubMed ID: 7576558
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Degradation of 2-bromo-, 2-chloro- and 2-fluorobenzoate by Pseudomonas putida CLB 250.
    Engesser KH; Schulte P
    FEMS Microbiol Lett; 1989 Jul; 51(1):143-7. PubMed ID: 2777062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.