These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 14962122)

  • 41. Degradation of Aroclor 1221 in soil by a hybrid pseudomonad.
    Havel J; Reineke W
    FEMS Microbiol Lett; 1993 Apr; 108(2):211-7. PubMed ID: 7683620
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Total degradation of various chlorobiphenyls by cocultures and in vivo constructed hybrid pseudomonads.
    Havel J; Reineke W
    FEMS Microbiol Lett; 1991 Mar; 62(2-3):163-9. PubMed ID: 2040426
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of chlorobenzoate transformation on the Pseudomonas testosteroni biphenyl and chlorobiphenyl degradation pathway.
    Sondossi M; Sylvestre M; Ahmad D
    Appl Environ Microbiol; 1992 Feb; 58(2):485-95. PubMed ID: 1610172
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Aerobic degradation of polychlorinated biphenyls.
    Pieper DH
    Appl Microbiol Biotechnol; 2005 Apr; 67(2):170-91. PubMed ID: 15614564
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optimizing Polychlorinated Biphenyl Degradation by Flavonoid-Induced Cells of the Rhizobacterium Rhodococcus erythropolis U23A.
    Pham TT; Pino Rodriguez NJ; Hijri M; Sylvestre M
    PLoS One; 2015; 10(5):e0126033. PubMed ID: 25970559
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Amino acids in positions 48, 52, and 73 differentiate the substrate specificities of the highly homologous chlorocatechol 1,2-dioxygenases CbnA and TcbC.
    Liu S; Ogawa N; Senda T; Hasebe A; Miyashita K
    J Bacteriol; 2005 Aug; 187(15):5427-36. PubMed ID: 16030237
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microorganisms degrading chlorobenzene via a meta-cleavage pathway harbor highly similar chlorocatechol 2,3-dioxygenase-encoding gene clusters.
    Göbel M; Kranz OH; Kaschabek SR; Schmidt E; Pieper DH; Reineke W
    Arch Microbiol; 2004 Oct; 182(2-3):147-56. PubMed ID: 15340793
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase.
    Kumamaru T; Suenaga H; Mitsuoka M; Watanabe T; Furukawa K
    Nat Biotechnol; 1998 Jul; 16(7):663-6. PubMed ID: 9661201
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regiospecificity of dioxygenation of di- to pentachlorobiphenyls and their degradation to chlorobenzoates by the bph-encoded catabolic pathway of Burkholderia sp. strain LB400.
    Seeger M; Zielinski M; Timmis KN; Hofer B
    Appl Environ Microbiol; 1999 Aug; 65(8):3614-21. PubMed ID: 10427057
    [TBL] [Abstract][Full Text] [Related]  

  • 50. BphK shows dechlorination activity against 4-chlorobenzoate, an end product of bph-promoted degradation of PCBs.
    Gilmartin N; Ryan D; Sherlock O; Dowling D
    FEMS Microbiol Lett; 2003 May; 222(2):251-5. PubMed ID: 12770715
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chromosomal integration of tcb chlorocatechol degradation pathway genes as a means of expanding the growth substrate range of bacteria to include haloaromatics.
    Klemba M; Jakobs B; Wittich RM; Pieper D
    Appl Environ Microbiol; 2000 Aug; 66(8):3255-61. PubMed ID: 10919778
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bacterial dehalogenation of chlorobenzoates and coculture biodegradation of 4,4'-dichlorobiphenyl.
    Adriaens P; Kohler HP; Kohler-Staub D; Focht DD
    Appl Environ Microbiol; 1989 Apr; 55(4):887-92. PubMed ID: 2499257
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Utilization of chlorobenzoates by microbial populations in sewage.
    DiGeronimo MJ; Nikaido M; Alexander M
    Appl Environ Microbiol; 1979 Mar; 37(3):619-25. PubMed ID: 453835
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Degradation of 2,4 dichlorobiphenyl via meta-cleavage pathway by Pseudomonas spp. consortium.
    Jayanna SK; Gayathri D
    Curr Microbiol; 2015 Jun; 70(6):871-6. PubMed ID: 25800378
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Degradation of 2-chlorobenzoate by Pseudomonas cepacia 2CBS.
    Fetzner S; Müller R; Lingens F
    Biol Chem Hoppe Seyler; 1989 Nov; 370(11):1173-82. PubMed ID: 2610934
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Aerobic degradation of polychlorinated biphenyls by Alcaligenes sp. JB1: metabolites and enzymes.
    Commandeur LC; May RJ; Mokross H; Bedard DL; Reineke W; Govers HA; Parsons JR
    Biodegradation; 1996-1997; 7(6):435-43. PubMed ID: 9188193
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microbial degradation of chloroaromatics: use of the meta-cleavage pathway for mineralization of chlorobenzene.
    Mars AE; Kasberg T; Kaschabek SR; van Agteren MH; Janssen DB; Reineke W
    J Bacteriol; 1997 Jul; 179(14):4530-7. PubMed ID: 9226262
    [TBL] [Abstract][Full Text] [Related]  

  • 58. TfdD(II), one of the two chloromuconate cycloisomerases of Ralstonia eutropha JMP134 (pJP4), cannot efficiently convert 2-chloro- cis, cis-muconate to trans-dienelactone to allow growth on 3-chlorobenzoate.
    Laemmli CM; Schönenberger R; Suter M; Zehnder AJ; van der Meer JR
    Arch Microbiol; 2002 Jul; 178(1):13-25. PubMed ID: 12070765
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metabolism of chlorinated biphenyls: use of 3,3'- and 3,5-dichlorobiphenyl as sole sources of carbon by natural species of Ralstonia and Pseudomonas.
    Adebusoye SA; Ilori MO; Picardal FW; Amund OO
    Chemosphere; 2008 Jan; 70(4):656-63. PubMed ID: 17706746
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Amplification of putative chlorocatechol dioxygenase gene fragments from alpha- and beta-Proteobacteria.
    Leander M; Vallaeys T; Fulthorpe R
    Can J Microbiol; 1998 May; 44(5):482-6. PubMed ID: 9699302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.