These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 14962804)
1. Mechanotransduction in the cortical bone is most efficient at loading frequencies of 5-10 Hz. Warden SJ; Turner CH Bone; 2004 Feb; 34(2):261-70. PubMed ID: 14962804 [TBL] [Abstract][Full Text] [Related]
2. The establishment of a mechanobiology model of bone and functional adaptation in response to mechanical loading. Chen XY; Zhang XZ; Guo Y; Li RX; Lin JJ; Wei Y Clin Biomech (Bristol); 2008; 23 Suppl 1():S88-95. PubMed ID: 18448217 [TBL] [Abstract][Full Text] [Related]
3. Mechanosensitivity of the rat skeleton decreases after a long period of loading, but is improved with time off. Saxon LK; Robling AG; Alam I; Turner CH Bone; 2005 Mar; 36(3):454-64. PubMed ID: 15777679 [TBL] [Abstract][Full Text] [Related]
4. Strain rate influences periosteal adaptation in mature bone. LaMothe JM; Hamilton NH; Zernicke RF Med Eng Phys; 2005 May; 27(4):277-84. PubMed ID: 15823468 [TBL] [Abstract][Full Text] [Related]
5. Bone adaptation to a mechanical loading program significantly increases skeletal fatigue resistance. Warden SJ; Hurst JA; Sanders MS; Turner CH; Burr DB; Li J J Bone Miner Res; 2005 May; 20(5):809-16. PubMed ID: 15824854 [TBL] [Abstract][Full Text] [Related]
6. Sympathetic nervous system does not mediate the load-induced cortical new bone formation. de Souza RL; Pitsillides AA; Lanyon LE; Skerry TM; Chenu C J Bone Miner Res; 2005 Dec; 20(12):2159-68. PubMed ID: 16294269 [TBL] [Abstract][Full Text] [Related]
7. [The establishment of a new mechanobiology model of bone and functional adaptation studies in vivo]. Chen XY; Zhang XZ; Zhang YL; Zhang CQ; Zhao HB; Zhang YH; Mao Y Zhonghua Yi Xue Za Zhi; 2007 May; 87(17):1160-4. PubMed ID: 17686232 [TBL] [Abstract][Full Text] [Related]
8. Mice lacking thrombospondin 2 show an atypical pattern of endocortical and periosteal bone formation in response to mechanical loading. Hankenson KD; Ausk BJ; Bain SD; Bornstein P; Gross TS; Srinivasan S Bone; 2006 Mar; 38(3):310-6. PubMed ID: 16290255 [TBL] [Abstract][Full Text] [Related]
9. Site specific bone adaptation response to mechanical loading. Kuruvilla SJ; Fox SD; Cullen DM; Akhter MP J Musculoskelet Neuronal Interact; 2008; 8(1):71-8. PubMed ID: 18398268 [TBL] [Abstract][Full Text] [Related]
10. Novel loci regulating bone anabolic response to loading: expression QTL analysis in C57BL/6JXC3H/HeJ mice cross. Kesavan C; Baylink DJ; Kapoor S; Mohan S Bone; 2007 Aug; 41(2):223-30. PubMed ID: 17543594 [TBL] [Abstract][Full Text] [Related]
11. Experimental and finite element analysis of the mouse caudal vertebrae loading model: prediction of cortical and trabecular bone adaptation. Webster D; Wirth A; van Lenthe GH; Müller R Biomech Model Mechanobiol; 2012 Jan; 11(1-2):221-30. PubMed ID: 21472383 [TBL] [Abstract][Full Text] [Related]
12. Mechanotransduction in bone does not require a functional cyclooxygenase-2 (COX-2) gene. Alam I; Warden SJ; Robling AG; Turner CH J Bone Miner Res; 2005 Mar; 20(3):438-46. PubMed ID: 15746988 [TBL] [Abstract][Full Text] [Related]
13. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. Robling AG; Hinant FM; Burr DB; Turner CH J Bone Miner Res; 2002 Aug; 17(8):1545-54. PubMed ID: 12162508 [TBL] [Abstract][Full Text] [Related]
14. No effect of verapamil on the local bone response to in vivo mechanical loading. Samnegård E; Cullen DM; Akhter MP; Kimmel DB J Orthop Res; 2001 Mar; 19(2):328-36. PubMed ID: 11347708 [TBL] [Abstract][Full Text] [Related]
15. Low-amplitude, broad-frequency vibration effects on cortical bone formation in mice. Castillo AB; Alam I; Tanaka SM; Levenda J; Li J; Warden SJ; Turner CH Bone; 2006 Nov; 39(5):1087-1096. PubMed ID: 16793358 [TBL] [Abstract][Full Text] [Related]
16. In vivo fatigue loading of the rat ulna induces both bone formation and resorption and leads to time-related changes in bone mechanical properties and density. Hsieh YF; Silva MJ J Orthop Res; 2002 Jul; 20(4):764-71. PubMed ID: 12168665 [TBL] [Abstract][Full Text] [Related]
17. Effects of loading frequency on mechanically induced bone formation. Hsieh YF; Turner CH J Bone Miner Res; 2001 May; 16(5):918-24. PubMed ID: 11341337 [TBL] [Abstract][Full Text] [Related]
18. Effect of a selective agonist for prostaglandin E receptor subtype EP4 (ONO-4819) on the cortical bone response to mechanical loading. Hagino H; Kuraoka M; Kameyama Y; Okano T; Teshima R Bone; 2005 Mar; 36(3):444-53. PubMed ID: 15777678 [TBL] [Abstract][Full Text] [Related]
19. Experimental and finite element analysis of the rat ulnar loading model-correlations between strain and bone formation following fatigue loading. Kotha SP; Hsieh YF; Strigel RM; Müller R; Silva MJ J Biomech; 2004 Apr; 37(4):541-8. PubMed ID: 14996566 [TBL] [Abstract][Full Text] [Related]
20. Identification of genetic loci that regulate bone adaptive response to mechanical loading in C57BL/6J and C3H/HeJ mice intercross. Kesavan C; Mohan S; Srivastava AK; Kapoor S; Wergedal JE; Yu H; Baylink DJ Bone; 2006 Sep; 39(3):634-43. PubMed ID: 16713414 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]