These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 14963031)

  • 1. RACK1 regulates specific functions of Gbetagamma.
    Chen S; Dell EJ; Lin F; Sai J; Hamm HE
    J Biol Chem; 2004 Apr; 279(17):17861-8. PubMed ID: 14963031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A docking site for G protein βγ subunits on the parathyroid hormone 1 receptor supports signaling through multiple pathways.
    Mahon MJ; Bonacci TM; Divieti P; Smrcka AV
    Mol Endocrinol; 2006 Jan; 20(1):136-46. PubMed ID: 16099817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RACK1 regulates directional cell migration by acting on G betagamma at the interface with its effectors PLC beta and PI3K gamma.
    Chen S; Lin F; Shin ME; Wang F; Shen L; Hamm HE
    Mol Biol Cell; 2008 Sep; 19(9):3909-22. PubMed ID: 18596232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clathrin-mediated endocytosis of m3 muscarinic receptors. Roles for Gbetagamma and tubulin.
    Popova JS; Rasenick MM
    J Biol Chem; 2004 Jul; 279(29):30410-8. PubMed ID: 15117940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RACK1 regulates angiotensin II-induced contractions of SHR preglomerular vascular smooth muscle cells.
    Zhu X; Jackson EK
    Am J Physiol Renal Physiol; 2017 Apr; 312(4):F565-F576. PubMed ID: 28100502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RACK1 binds to a signal transfer region of G betagamma and inhibits phospholipase C beta2 activation.
    Chen S; Lin F; Hamm HE
    J Biol Chem; 2005 Sep; 280(39):33445-52. PubMed ID: 16051595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The betagamma subunit of heterotrimeric G proteins interacts with RACK1 and two other WD repeat proteins.
    Dell EJ; Connor J; Chen S; Stebbins EG; Skiba NP; Mochly-Rosen D; Hamm HE
    J Biol Chem; 2002 Dec; 277(51):49888-95. PubMed ID: 12359736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulator of G-protein signaling 3 (RGS3) inhibits Gbeta1gamma 2-induced inositol phosphate production, mitogen-activated protein kinase activation, and Akt activation.
    Shi CS; Lee SB; Sinnarajah S; Dessauer CW; Rhee SG; Kehrl JH
    J Biol Chem; 2001 Jun; 276(26):24293-300. PubMed ID: 11294858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signaling by a non-dissociated complex of G protein βγ and α subunits stimulated by a receptor-independent activator of G protein signaling, AGS8.
    Yuan C; Sato M; Lanier SM; Smrcka AV
    J Biol Chem; 2007 Jul; 282(27):19938-47. PubMed ID: 17446173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of association between activated Galpha q and Gbetagamma disrupts receptor-dependent and receptor-independent signaling.
    Evanko DS; Thiyagarajan MM; Takida S; Wedegaertner PB
    Cell Signal; 2005 Oct; 17(10):1218-28. PubMed ID: 16038796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gbetagamma inhibits Galpha GTPase-activating proteins by inhibition of Galpha-GTP binding during stimulation by receptor.
    Tang W; Tu Y; Nayak SK; Woodson J; Jehl M; Ross EM
    J Biol Chem; 2006 Feb; 281(8):4746-53. PubMed ID: 16407201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of nuclear factor {kappa}B by somatostatin type 2 receptor in pancreatic acinar AR42J cells involves G{alpha}14 and multiple signaling components: a mechanism requiring protein kinase C, calmodulin-dependent kinase II, ERK, and c-Src.
    Liu AM; Wong YH
    J Biol Chem; 2005 Oct; 280(41):34617-25. PubMed ID: 16115892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conditional stimulation of type V and VI adenylyl cyclases by G protein betagamma subunits.
    Gao X; Sadana R; Dessauer CW; Patel TB
    J Biol Chem; 2007 Jan; 282(1):294-302. PubMed ID: 17110384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of Gbetagamma with RACK1 and other WD40 repeat proteins.
    Chen S; Spiegelberg BD; Lin F; Dell EJ; Hamm HE
    J Mol Cell Cardiol; 2004 Aug; 37(2):399-406. PubMed ID: 15276010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of membrane components in the binding of proteins to membrane surfaces.
    Philip F; Scarlata S
    Biochemistry; 2004 Sep; 43(37):11691-700. PubMed ID: 15362853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N terminus of type 5 adenylyl cyclase scaffolds Gs heterotrimer.
    Sadana R; Dascal N; Dessauer CW
    Mol Pharmacol; 2009 Dec; 76(6):1256-64. PubMed ID: 19783621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gbetagamma activation site in adenylyl cyclase type II. Adenylyl cyclase type III is inhibited by Gbetagamma.
    Diel S; Klass K; Wittig B; Kleuss C
    J Biol Chem; 2006 Jan; 281(1):288-94. PubMed ID: 16275644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The G protein betagamma subunit mediates reannealing of adherens junctions to reverse endothelial permeability increase by thrombin.
    Knezevic N; Tauseef M; Thennes T; Mehta D
    J Exp Med; 2009 Nov; 206(12):2761-77. PubMed ID: 19917775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular signal-regulated kinase 1/2 activation by myometrial oxytocin receptor involves Galpha(q)Gbetagamma and epidermal growth factor receptor tyrosine kinase activation.
    Zhong M; Yang M; Sanborn BM
    Endocrinology; 2003 Jul; 144(7):2947-56. PubMed ID: 12810550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. G beta gamma mediates the interplay between tubulin dimers and microtubules in the modulation of Gq signaling.
    Popova JS; Rasenick MM
    J Biol Chem; 2003 Sep; 278(36):34299-308. PubMed ID: 12807915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.