These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 14963057)

  • 41. Comparison of body composition measurements obtained by two fan-beam DXA instruments.
    Sakai Y; Ito H; Meno T; Numata M; Jingu S
    J Clin Densitom; 2006; 9(2):191-7. PubMed ID: 16785080
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of bone mineral density and body composition measurements in women obtained from two DXA instruments.
    Gillette-Guyonnet S; Andrieu S; Nourhashemi F; Cantet C; Grandjean H; Vellas B
    Mech Ageing Dev; 2003 Mar; 124(3):317-21. PubMed ID: 12663129
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Body composition analysis of pigs by dual-energy x-ray absorptiometry.
    Mitchell AD; Conway JM; Potts WJ
    J Anim Sci; 1996 Nov; 74(11):2663-71. PubMed ID: 8923180
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Repeatability and reproducibility of measurements obtained by dual-energy X-ray absorptiometry on pig carcasses.
    Kipper M; Marcoux M; Andretta I; Pomar C
    J Anim Sci; 2018 May; 96(5):2027-2037. PubMed ID: 29722809
    [TBL] [Abstract][Full Text] [Related]  

  • 45. QMR: validation of an infant and children body composition instrument using piglets against chemical analysis.
    Andres A; Mitchell AD; Badger TM
    Int J Obes (Lond); 2010 Apr; 34(4):775-80. PubMed ID: 20065974
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Body composition analysis by dual X-ray absorptiometry: in vivo and in vitro comparison of three different fan-beam instruments.
    Aasen G; Fagertun H; Halse J
    Scand J Clin Lab Invest; 2006; 66(8):659-66. PubMed ID: 17101558
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Soft tissue composition of pigs measured with dual x-ray absorptiometry: comparison with chemical analyses and effects of carcass thicknesses.
    Lukaski HC; Marchello MJ; Hall CB; Schafer DM; Siders WA
    Nutrition; 1999 Sep; 15(9):697-703. PubMed ID: 10467615
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dual energy X-ray absorptiometry (DXA) reliability and intraobserver reproducibility for segmental body composition measuring.
    Moreira OC; Oliveira CEP; De Paz JA
    Nutr Hosp; 2018 Jan; 35(2):340-345. PubMed ID: 29756967
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Accuracy of dual-energy x-ray absorptiometry for body-composition measurements in children.
    Ellis KJ; Shypailo RJ; Pratt JA; Pond WG
    Am J Clin Nutr; 1994 Nov; 60(5):660-5. PubMed ID: 7942570
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Performance of dual-energy x-ray absorptiometry in evaluating bone, lean body mass, and fat in pediatric subjects.
    Chan GM
    J Bone Miner Res; 1992 Apr; 7(4):369-74. PubMed ID: 1609625
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dual-energy X-ray absorptiometry is a reliable non-invasive technique for determining whole body composition of chickens.
    Schallier S; Li C; Lesuisse J; Janssens GPJ; Everaert N; Buyse J
    Poult Sci; 2019 Jun; 98(6):2652-2661. PubMed ID: 30839076
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Do Textiles Impact DXA Bone Density or Body Composition Results?
    Siglinsky E; Binkley N; Krueger D
    J Clin Densitom; 2018; 21(2):303-307. PubMed ID: 28988694
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Validation of quantitative magnetic resonance body composition analysis for infants using piglet model.
    Mitchell AD
    Pediatr Res; 2011 Apr; 69(4):330-5. PubMed ID: 21150693
    [TBL] [Abstract][Full Text] [Related]  

  • 54. DXA body composition corrective factors between Hologic Discovery models to conduct multicenter studies.
    Sutter T; Duboeuf F; Chapurlat R; Cortet B; Lespessailles E; Roux JP
    Bone; 2021 Jan; 142():115683. PubMed ID: 33045389
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Body composition in human infants at birth and postnatally.
    Koo WW; Walters JC; Hockman EM
    J Nutr; 2000 Sep; 130(9):2188-94. PubMed ID: 10958811
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dual X-ray absorptiometry: a comparison between fan beam and pencil beam scans.
    Blake GM; Parker JC; Buxton FM; Fogelman I
    Br J Radiol; 1993 Oct; 66(790):902-6. PubMed ID: 8220974
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dual-energy X-ray absorptiometry for the measurement of gross body composition in rats.
    Jebb SA; Garland SW; Jennings G; Elia M
    Br J Nutr; 1996 Jun; 75(6):803-9. PubMed ID: 8774226
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A multinational study to develop universal standardization of whole-body bone density and composition using GE Healthcare Lunar and Hologic DXA systems.
    Shepherd JA; Fan B; Lu Y; Wu XP; Wacker WK; Ergun DL; Levine MA
    J Bone Miner Res; 2012 Oct; 27(10):2208-16. PubMed ID: 22623101
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison insight dual X-ray absorptiometry (DXA), histomorphometry, ash weight, and morphometric indices for bone evaluation in an animal model (the orchidectomized rat) of male osteoporosis.
    Libouban H; Moreau MF; Legrand E; Baslé MF; Audran M; Chappard D
    Calcif Tissue Int; 2001 Jan; 68(1):31-7. PubMed ID: 12037621
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dual-energy X-ray absorptiometry and body composition.
    Laskey MA
    Nutrition; 1996 Jan; 12(1):45-51. PubMed ID: 8838836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.