These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 1496397)
1. Uranium bioaccumulation by a Citrobacter sp. as a result of enzymically mediated growth of polycrystalline HUO2PO4. Macaskie LE; Empson RM; Cheetham AK; Grey CP; Skarnulis AJ Science; 1992 Aug; 257(5071):782-4. PubMed ID: 1496397 [TBL] [Abstract][Full Text] [Related]
2. Enzymically mediated bioprecipitation of uranium by a Citrobacter sp. : a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation. Macaskie LE; Bonthrone KM; Yong P; Goddard DT Microbiology (Reading); 2000 Aug; 146 ( Pt 8)():1855-1867. PubMed ID: 10931890 [TBL] [Abstract][Full Text] [Related]
3. Localization of enzymically enhanced heavy metal accumulation by Citrobacter sp. and metal accumulation in vitro by liposomes containing entrapped enzyme. Jeong BC; Hawes C; Bonthrone KM; Macaskie LE Microbiology (Reading); 1997 Jul; 143 ( Pt 7)():2497-2507. PubMed ID: 9245830 [TBL] [Abstract][Full Text] [Related]
4. Bioaccumulation of nickel by intercalation into polycrystalline hydrogen uranyl phosphate deposited via an enzymatic mechanism. Bonthrone KM; Basnakova G; Lin F; Macaskie LE Nat Biotechnol; 1996 May; 14(5):635-8. PubMed ID: 9630957 [TBL] [Abstract][Full Text] [Related]
5. Phosphate release and heavy metal accumulation by biofilm-immobilized and chemically-coupled cells of a Citrobacter sp. pre-grown in continuous culture. Finlay JA; Allan VJ; Conner A; Callow ME; Basnakova G; Macaskie LE Biotechnol Bioeng; 1999 Apr; 63(1):87-97. PubMed ID: 10099584 [TBL] [Abstract][Full Text] [Related]
6. The use of Escherichia coli bearing a phoN gene for the removal of uranium and nickel from aqueous flows. Basnakova G; Stephens ER; Thaller MC; Rossolini GM; Macaskie LE Appl Microbiol Biotechnol; 1998 Aug; 50(2):266-72. PubMed ID: 9763695 [TBL] [Abstract][Full Text] [Related]
7. Phosphatase-mediated heavy metal accumulation by a Citrobacter sp. and related enterobacteria. Macaskie LE; Bonthrone KM; Rouch DA FEMS Microbiol Lett; 1994 Aug; 121(2):141-6. PubMed ID: 7926662 [TBL] [Abstract][Full Text] [Related]
8. Role of citrate as a complexing ligand which permits enzymically-mediated uranyl ion bioaccumulation. Yong P; Macaskie LE Bull Environ Contam Toxicol; 1995 Jun; 54(6):892-9. PubMed ID: 7647506 [No Abstract] [Full Text] [Related]
9. Biosorption and biomineralization of uranium(VI) by Saccharomyces cerevisiae-Crystal formation of chernikovite. Zheng XY; Wang XY; Shen YH; Lu X; Wang TS Chemosphere; 2017 May; 175():161-169. PubMed ID: 28211330 [TBL] [Abstract][Full Text] [Related]
10. Interaction of Uranium with Bacterial Cell Surfaces: Inferences from Phosphatase-Mediated Uranium Precipitation. Kulkarni S; Misra CS; Gupta A; Ballal A; Apte SK Appl Environ Microbiol; 2016 Aug; 82(16):4965-74. PubMed ID: 27287317 [TBL] [Abstract][Full Text] [Related]
11. Enzymically accelerated biomineralization of heavy metals: application to the removal of americium and plutonium from aqueous flows. Macaskie LE; Jeong BC; Tolley MR FEMS Microbiol Rev; 1994 Aug; 14(4):351-67. PubMed ID: 7917422 [TBL] [Abstract][Full Text] [Related]
12. Uranium biomineralization induced by a metal tolerant Serratia strain under acid, alkaline and irradiated conditions. Chandwadkar P; Misra HS; Acharya C Metallomics; 2018 Aug; 10(8):1078-1088. PubMed ID: 29999065 [TBL] [Abstract][Full Text] [Related]
13. Uranyl precipitation by Pseudomonas aeruginosa via controlled polyphosphate metabolism. Renninger N; Knopp R; Nitsche H; Clark DS; Keasling JD Appl Environ Microbiol; 2004 Dec; 70(12):7404-12. PubMed ID: 15574942 [TBL] [Abstract][Full Text] [Related]
14. Phosphate regulates uranium(VI) toxicity to Lemna gibba L. G3. Mkandawire M; Vogel K; Taubert B; Dudel EG Environ Toxicol; 2007 Feb; 22(1):9-16. PubMed ID: 17295276 [TBL] [Abstract][Full Text] [Related]
15. Uranium Biominerals Precipitated by an Environmental Isolate of Serratia under Anaerobic Conditions. Newsome L; Morris K; Lloyd JR PLoS One; 2015; 10(7):e0132392. PubMed ID: 26132209 [TBL] [Abstract][Full Text] [Related]
16. Decrease of U(VI) immobilization capability of the facultative anaerobic strain Paenibacillus sp. JG-TB8 under anoxic conditions due to strongly reduced phosphatase activity. Reitz T; Rossberg A; Barkleit A; Selenska-Pobell S; Merroun ML PLoS One; 2014; 9(8):e102447. PubMed ID: 25157416 [TBL] [Abstract][Full Text] [Related]
17. Phosphatase production and activity in Citrobacter freundii and a naturally occurring, heavy-metal-accumulating Citrobacter sp. Montgomery DM; Dean AC; Wiffen P; Macaskie LE Microbiology (Reading); 1995 Oct; 141 ( Pt 10)():2433-41. PubMed ID: 7582003 [TBL] [Abstract][Full Text] [Related]
18. XANES and EXAFS investigation of uranium incorporation on nZVI in the presence of phosphate. Qiu M; Wang M; Zhao Q; Hu B; Zhu Y Chemosphere; 2018 Jun; 201():764-771. PubMed ID: 29550570 [TBL] [Abstract][Full Text] [Related]
20. Study on biosorption kinetics and thermodynamics of uranium by Citrobacter freudii. Xie S; Yang J; Chen C; Zhang X; Wang Q; Zhang C J Environ Radioact; 2008 Jan; 99(1):126-33. PubMed ID: 17765369 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]