These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 14964350)

  • 1. Permeability of musculoskeletal tissues and scaffolding materials: experimental results and theoretical predictions.
    Sander EA; Nauman EA
    Crit Rev Biomed Eng; 2003; 31(1-2):1-26. PubMed ID: 14964350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interstitial fluid flow in tendons or ligaments: a porous medium finite element simulation.
    Butler SL; Kohles SS; Thielke RJ; Chen C; Vanderby R
    Med Biol Eng Comput; 1997 Nov; 35(6):742-6. PubMed ID: 9538555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiology and Engineering of the Graded Interfaces of Musculoskeletal Junctions.
    Bonnevie ED; Mauck RL
    Annu Rev Biomed Eng; 2018 Jun; 20():403-429. PubMed ID: 29641907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of neutral solute transport in a dynamically loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engineering.
    Mauck RL; Hung CT; Ateshian GA
    J Biomech Eng; 2003 Oct; 125(5):602-14. PubMed ID: 14618919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An asymptotic solution for the contact of two biphasic cartilage layers.
    Ateshian GA; Lai WM; Zhu WB; Mow VC
    J Biomech; 1994 Nov; 27(11):1347-60. PubMed ID: 7798285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fiber matrix model for interstitial fluid flow and permeability in ligaments and tendons.
    Chen CT; Malkus DS; Vanderby R
    Biorheology; 1998; 35(2):103-18. PubMed ID: 10193483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors affecting the longevity and strength in an in vitro model of the bone-ligament interface.
    Paxton JZ; Donnelly K; Keatch RP; Baar K; Grover LM
    Ann Biomed Eng; 2010 Jun; 38(6):2155-66. PubMed ID: 20431953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poroelastic evaluation of fluid movement through the lacunocanalicular system.
    Goulet GC; Coombe D; Martinuzzi RJ; Zernicke RF
    Ann Biomed Eng; 2009 Jul; 37(7):1390-402. PubMed ID: 19415492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycosaminoglycan network geometry may contribute to anisotropic hydraulic permeability in cartilage under compression.
    Quinn TM; Dierickx P; Grodzinsky AJ
    J Biomech; 2001 Nov; 34(11):1483-90. PubMed ID: 11672723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of cell growth in tissue-engineering constructs under direct perfusion: Modeling and simulation.
    Chung CA; Chen CW; Chen CP; Tseng CS
    Biotechnol Bioeng; 2007 Aug; 97(6):1603-16. PubMed ID: 17304558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering structurally organized cartilage and bone tissues.
    Sharma B; Elisseeff JH
    Ann Biomed Eng; 2004 Jan; 32(1):148-59. PubMed ID: 14964730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling and simulation of complex dynamic musculoskeletal architectures.
    Zhang X; Chan FK; Parthasarathy T; Gazzola M
    Nat Commun; 2019 Oct; 10(1):4825. PubMed ID: 31645555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is trabecular bone permeability governed by molecular ordering-induced fluid viscosity gain? Arguments from re-evaluation of experimental data in the framework of homogenization theory.
    Abdalrahman T; Scheiner S; Hellmich C
    J Theor Biol; 2015 Jan; 365():433-44. PubMed ID: 25452137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The biphasic poroviscoelastic behavior of articular cartilage: role of the surface zone in governing the compressive behavior.
    Setton LA; Zhu W; Mow VC
    J Biomech; 1993; 26(4-5):581-92. PubMed ID: 8478359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting permeability of regular tissue engineering scaffolds: scaling analysis of pore architecture, scaffold length, and fluid flow rate effects.
    Rahbari A; Montazerian H; Davoodi E; Homayoonfar S
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(3):231-241. PubMed ID: 27494073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal and spatial control over soluble protein signaling for musculoskeletal tissue engineering.
    Murphy WL
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2103-5. PubMed ID: 19964780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluid flow in bone in vitro.
    Johnson MW; Chakkalakal DA; Harper RA; Katz JL; Rouhana SW
    J Biomech; 1982; 15(11):881-5. PubMed ID: 7161290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mathematical model for fluid shear-sensitive 3D tissue construct development.
    Liu D; Chua CK; Leong KF
    Biomech Model Mechanobiol; 2013 Jan; 12(1):19-31. PubMed ID: 22314710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micromechanically based poroelastic modeling of fluid flow in Haversian bone.
    Swan CC; Lakes RS; Brand RA; Stewart KJ
    J Biomech Eng; 2003 Feb; 125(1):25-37. PubMed ID: 12661194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aggrecan nanoscale solid-fluid interactions are a primary determinant of cartilage dynamic mechanical properties.
    Nia HT; Han L; Bozchalooi IS; Roughley P; Youcef-Toumi K; Grodzinsky AJ; Ortiz C
    ACS Nano; 2015 Mar; 9(3):2614-25. PubMed ID: 25758717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.