BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 14964701)

  • 1. Circadian genes in a blind subterranean mammal III: molecular cloning and circadian regulation of cryptochrome genes in the blind subterranean mole rat, Spalax ehrenbergi superspecies.
    Avivi A; Oster H; Joel A; Beiles A; Albrecht U; Nevo E
    J Biol Rhythms; 2004 Feb; 19(1):22-34. PubMed ID: 14964701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circadian genes in a blind subterranean mammal II: conservation and uniqueness of the three Period homologs in the blind subterranean mole rat, Spalax ehrenbergi superspecies.
    Avivi A; Oster H; Joel A; Beiles A; Albrecht U; Nevo E
    Proc Natl Acad Sci U S A; 2002 Sep; 99(18):11718-23. PubMed ID: 12193657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological clock in total darkness: the Clock/MOP3 circadian system of the blind subterranean mole rat.
    Avivi A; Albrecht U; Oster H; Joel A; Beiles A; Nevo E
    Proc Natl Acad Sci U S A; 2001 Nov; 98(24):13751-6. PubMed ID: 11707566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and circadian expression of rat Cry1.
    Park K; Kang HM
    Mol Cells; 2004 Oct; 18(2):256-60. PubMed ID: 15529004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ontogenesis of photoperiodic entrainment of the molecular core clockwork in the rat suprachiasmatic nucleus.
    Kováciková Z; Sládek M; Laurinová K; Bendová Z; Illnerová H; Sumová A
    Brain Res; 2005 Dec; 1064(1-2):83-9. PubMed ID: 16289486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular characterization of the circadian clock genes in the bean bug, Riptortus pedestris, and their expression patterns under long- and short-day conditions.
    Ikeno T; Numata H; Goto SG
    Gene; 2008 Aug; 419(1-2):56-61. PubMed ID: 18547745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restoration of circadian rhythmicity in circadian clock-deficient mice in constant light.
    Abraham D; Dallmann R; Steinlechner S; Albrecht U; Eichele G; Oster H
    J Biol Rhythms; 2006 Jun; 21(3):169-76. PubMed ID: 16731656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks.
    Yuan Q; Metterville D; Briscoe AD; Reppert SM
    Mol Biol Evol; 2007 Apr; 24(4):948-55. PubMed ID: 17244599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian expression of clock genes in the rat eye and brain.
    Park K; Kang HM
    Mol Cells; 2006 Dec; 22(3):285-90. PubMed ID: 17202856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive evolution of small heat shock protein/alpha B-crystallin promoter activity of the blind subterranean mole rat, Spalax ehrenbergi.
    Hough RB; Avivi A; Davis J; Joel A; Nevo E; Piatigorsky J
    Proc Natl Acad Sci U S A; 2002 Jun; 99(12):8145-50. PubMed ID: 12060761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of prokineticin 2 expression by light and the circadian clock.
    Cheng MY; Bittman EL; Hattar S; Zhou QY
    BMC Neurosci; 2005 Mar; 6():17. PubMed ID: 15762991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of vitamin A depletion on nonvisual phototransduction pathways in cryptochromeless mice.
    Thompson CL; Selby CP; Van Gelder RN; Blaner WS; Lee J; Quadro L; Lai K; Gottesman ME; Sancar A
    J Biol Rhythms; 2004 Dec; 19(6):504-17. PubMed ID: 15523112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unusual circadian locomotor activity and pathophysiology in mutant CRY1 transgenic mice.
    Okano S; Akashi M; Hayasaka K; Nakajima O
    Neurosci Lett; 2009 Feb; 451(3):246-51. PubMed ID: 19159659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A switch from diurnal to nocturnal activity in S. ehrenbergi is accompanied by an uncoupling of light input and the circadian clock.
    Oster H; Avivi A; Joel A; Albrecht U; Nevo E
    Curr Biol; 2002 Nov; 12(22):1919-22. PubMed ID: 12445384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional evolution of the photolyase/cryptochrome protein family: importance of the C terminus of mammalian CRY1 for circadian core oscillator performance.
    Chaves I; Yagita K; Barnhoorn S; Okamura H; van der Horst GT; Tamanini F
    Mol Cell Biol; 2006 Mar; 26(5):1743-53. PubMed ID: 16478995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential expression profiling of the blind subterranean mole rat Spalax ehrenbergi superspecies: bioprospecting for hypoxia tolerance.
    Avivi A; Brodsky L; Nevo E; Band MR
    Physiol Genomics; 2006 Oct; 27(1):54-64. PubMed ID: 16788006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoperiod regulates multiple gene expression in the suprachiasmatic nuclei and pars tuberalis of the Siberian hamster (Phodopus sungorus).
    Johnston JD; Ebling FJ; Hazlerigg DG
    Eur J Neurosci; 2005 Jun; 21(11):2967-74. PubMed ID: 15978008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian intraocular pressure rhythm is generated by clock genes.
    Maeda A; Tsujiya S; Higashide T; Toida K; Todo T; Ueyama T; Okamura H; Sugiyama K
    Invest Ophthalmol Vis Sci; 2006 Sep; 47(9):4050-2. PubMed ID: 16936122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photosensitivity to different light intensities in blind and sighted rodents.
    Zubidat AE; Nelson RJ; Haim A
    J Exp Biol; 2009 Dec; 212(Pt 23):3857-64. PubMed ID: 19915128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of light cues on re-entrainment of the food-dominated peripheral clocks in mammals.
    Wu T; Jin Y; Ni Y; Zhang D; Kato H; Fu Z
    Gene; 2008 Aug; 419(1-2):27-34. PubMed ID: 18538509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.