BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 14964720)

  • 1. A paradigm for functional tissue engineering of articular cartilage via applied physiologic deformational loading.
    Hung CT; Mauck RL; Wang CC; Lima EG; Ateshian GA
    Ann Biomed Eng; 2004 Jan; 32(1):35-49. PubMed ID: 14964720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of seeding density and dynamic deformational loading on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels.
    Mauck RL; Seyhan SL; Ateshian GA; Hung CT
    Ann Biomed Eng; 2002 Sep; 30(8):1046-56. PubMed ID: 12449765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anatomically shaped osteochondral constructs for articular cartilage repair.
    Hung CT; Lima EG; Mauck RL; Takai E; LeRoux MA; Lu HH; Stark RG; Guo XE; Ateshian GA
    J Biomech; 2003 Dec; 36(12):1853-64. PubMed ID: 14614939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading.
    Mauck RL; Wang CC; Oswald ES; Ateshian GA; Hung CT
    Osteoarthritis Cartilage; 2003 Dec; 11(12):879-90. PubMed ID: 14629964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of applied compressive loading on tissue-engineered cartilage constructs cultured with TGF-beta3.
    Lima EG; Bian L; Mauck RL; Byers BA; Tuan RS; Ateshian GA; Hung CT
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():779-82. PubMed ID: 17946858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concentric cylinder bioreactor for production of tissue engineered cartilage: effect of seeding density and hydrodynamic loading on construct development.
    Saini S; Wick TM
    Biotechnol Prog; 2003; 19(2):510-21. PubMed ID: 12675595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic mechanical loading enhances functional properties of tissue-engineered cartilage using mature canine chondrocytes.
    Bian L; Fong JV; Lima EG; Stoker AM; Ateshian GA; Cook JL; Hung CT
    Tissue Eng Part A; 2010 May; 16(5):1781-90. PubMed ID: 20028219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-beta3.
    Lima EG; Bian L; Ng KW; Mauck RL; Byers BA; Tuan RS; Ateshian GA; Hung CT
    Osteoarthritis Cartilage; 2007 Sep; 15(9):1025-33. PubMed ID: 17498976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels.
    Mauck RL; Soltz MA; Wang CC; Wong DD; Chao PH; Valhmu WB; Hung CT; Ateshian GA
    J Biomech Eng; 2000 Jun; 122(3):252-60. PubMed ID: 10923293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic deformational loading results in selective application of mechanical stimulation in a layered, tissue-engineered cartilage construct.
    Ng KW; Mauck RL; Statman LY; Lin EY; Ateshian GA; Hung CT
    Biorheology; 2006; 43(3,4):497-507. PubMed ID: 16912421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering.
    Mauck RL; Nicoll SB; Seyhan SL; Ateshian GA; Hung CT
    Tissue Eng; 2003 Aug; 9(4):597-611. PubMed ID: 13678439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tensile properties of engineered cartilage formed from chondrocyte- and MSC-laden hydrogels.
    Huang AH; Yeger-McKeever M; Stein A; Mauck RL
    Osteoarthritis Cartilage; 2008 Sep; 16(9):1074-82. PubMed ID: 18353693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of injectable high strength hydrogel based on 4-arm star PEG for cartilage tissue engineering.
    Wang J; Zhang F; Tsang WP; Wan C; Wu C
    Biomaterials; 2017 Mar; 120():11-21. PubMed ID: 28024231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A layered agarose approach to fabricate depth-dependent inhomogeneity in chondrocyte-seeded constructs.
    Ng KW; Wang CC; Mauck RL; Kelly TA; Chahine NO; Costa KD; Ateshian GA; Hung CT
    J Orthop Res; 2005 Jan; 23(1):134-41. PubMed ID: 15607885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering biomechanically functional neocartilage derived from expanded articular chondrocytes through the manipulation of cell-seeding density and dexamethasone concentration.
    Huang BJ; Huey DJ; Hu JC; Athanasiou KA
    J Tissue Eng Regen Med; 2017 Aug; 11(8):2323-2332. PubMed ID: 27138113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-serum media and dynamic deformational loading in tissue engineering of articular cartilage.
    Kelly TA; Fisher MB; Oswald ES; Tai T; Mauck RL; Ateshian GA; Hung CT
    Ann Biomed Eng; 2008 May; 36(5):769-79. PubMed ID: 18299986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanomechanical properties of alginate-recovered chondrocyte matrices for cartilage regeneration.
    Tomkoria S; Masuda K; Mao J
    Proc Inst Mech Eng H; 2007 Jul; 221(5):467-73. PubMed ID: 17822149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of radial variations in material properties and matrix composition of chondrocyte-seeded agarose hydrogel constructs.
    Kelly TA; Ng KW; Ateshian GA; Hung CT
    Osteoarthritis Cartilage; 2009 Jan; 17(1):73-82. PubMed ID: 18805027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of devitalized trabecular bone on the formation of osteochondral tissue-engineered constructs.
    Lima EG; Grace Chao PH; Ateshian GA; Bal BS; Cook JL; Vunjak-Novakovic G; Hung CT
    Biomaterials; 2008 Nov; 29(32):4292-9. PubMed ID: 18718655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue engineering of human cartilage and osteochondral composites using recirculation bioreactors.
    Mahmoudifar N; Doran PM
    Biomaterials; 2005 Dec; 26(34):7012-24. PubMed ID: 16039710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.