BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 14965876)

  • 21. Biomechanical properties of knee articular cartilage.
    Laasanen MS; Töyräs J; Korhonen RK; Rieppo J; Saarakkala S; Nieminen MT; Hirvonen J; Jurvelin JS
    Biorheology; 2003; 40(1-3):133-40. PubMed ID: 12454397
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking.
    Pierce DM; Trobin W; Trattnig S; Bischof H; Holzapfel GA
    J Biomech Eng; 2009 Sep; 131(9):091006. PubMed ID: 19725695
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simulation of high tensile Poisson's ratios of articular cartilage with a finite element fibril-reinforced hyperelastic model.
    García JJ
    Med Eng Phys; 2008 Jun; 30(5):590-8. PubMed ID: 17690001
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Finite element biphasic indentation of cartilage: a comparison of experimental indenter and physiological contact geometries.
    Warner MD; Taylor WR; Clift SE
    Proc Inst Mech Eng H; 2001; 215(5):487-96. PubMed ID: 11726049
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Indentation testing of human articular cartilage: effects of probe tip geometry and indentation depth on intra-tissue strain.
    Bae WC; Lewis CW; Levenston ME; Sah RL
    J Biomech; 2006; 39(6):1039-47. PubMed ID: 16549094
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Time and depth dependent Poisson's ratio of cartilage explained by an inhomogeneous orthotropic fiber embedded biphasic model.
    Chegini S; Ferguson SJ
    J Biomech; 2010 Jun; 43(9):1660-6. PubMed ID: 20392445
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cartilage thickness distribution affects computational model predictions of cervical spine facet contact parameters.
    Womack W; Ayturk UM; Puttlitz CM
    J Biomech Eng; 2011 Jan; 133(1):011009. PubMed ID: 21186899
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Indentation of an osteochondral repair: sensitivity to experimental variables and boundary conditions.
    Smith CL; Mansour JM
    J Biomech; 2000 Nov; 33(11):1507-11. PubMed ID: 10940411
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A viscoelastic constitutive model can accurately represent entire creep indentation tests of human patella cartilage.
    Keenan KE; Pal S; Lindsey DP; Besier TF; Beaupre GS
    J Appl Biomech; 2013 Jun; 29(3):292-302. PubMed ID: 23027200
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biphasic indentation of articular cartilage--I. Theoretical analysis.
    Mak AF; Lai WM; Mow VC
    J Biomech; 1987; 20(7):703-14. PubMed ID: 3654668
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Histological and biomechanical assessment of articular cartilage from stored osteochondral shell allografts.
    Kwan MK; Wayne JS; Woo SL; Field FP; Hoover J; Meyers M
    J Orthop Res; 1989; 7(5):637-44. PubMed ID: 2474640
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Frictional behaviour of bovine articular cartilage.
    Jin ZM; Pickard JE; Forster H; Ingham E; Fisher J
    Biorheology; 2000; 37(1-2):57-63. PubMed ID: 10912178
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cryoscanning electron microscopy of loaded articular cartilage with special reference to the surface amorphous layer.
    Kobayashi S; Yonekubo S; Kurogouchi Y
    J Anat; 1996 Apr; 188 ( Pt 2)(Pt 2):311-22. PubMed ID: 8621329
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Zonal and directional variations in tensile properties of bovine articular cartilage with special reference to strain rate variation.
    Verteramo A; Seedhom BB
    Biorheology; 2004; 41(3-4):203-13. PubMed ID: 15299253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomechanical properties of articular cartilage as a standard for biologically integrated interfaces.
    Fierlbeck J; Hammer J; Englert C; Reuben RL
    Technol Health Care; 2006; 14(6):541-7. PubMed ID: 17148867
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Finite element analyses of repaired articular surfaces.
    Wayne JS; Woo SL; Kwan MK
    Proc Inst Mech Eng H; 1991; 205(3):155-62. PubMed ID: 1823789
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative imaging of young's modulus of soft tissues from ultrasound water jet indentation: a finite element study.
    Lu MH; Mao R; Lu Y; Liu Z; Wang TF; Chen SP
    Comput Math Methods Med; 2012; 2012():979847. PubMed ID: 22927890
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contribution of tissue composition and structure to mechanical response of articular cartilage under different loading geometries and strain rates.
    Julkunen P; Jurvelin JS; Isaksson H
    Biomech Model Mechanobiol; 2010 Apr; 9(2):237-45. PubMed ID: 19680701
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model.
    Julkunen P; Kiviranta P; Wilson W; Jurvelin JS; Korhonen RK
    J Biomech; 2007; 40(8):1862-70. PubMed ID: 17052722
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Indentation test of soft tissues with curved substrates: a finite element study.
    Lu MH; Zheng YP
    Med Biol Eng Comput; 2004 Jul; 42(4):535-40. PubMed ID: 15320464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.