These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 14965907)

  • 1. Plant-insect interactions: double-dating associated insect and plant lineages reveals asynchronous radiations.
    Percy DM; Page RD; Cronk QC
    Syst Biol; 2004 Feb; 53(1):120-7. PubMed ID: 14965907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiation, diversity, and host-plant interactions among island and continental legume-feeding psyllids.
    Percy DM
    Evolution; 2003 Nov; 57(11):2540-56. PubMed ID: 14686530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Codiversification in an ant-plant mutualism: stem texture and the evolution of host use in Crematogaster (Formicidae: Myrmicinae) inhabitants of Macaranga (Euphorbiaceae).
    Quek SP; Davies SJ; Itino T; Pierce NE
    Evolution; 2004 Mar; 58(3):554-70. PubMed ID: 15119439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Host-symbiont stability and fast evolutionary rates in an ant-bacterium association: cospeciation of camponotus species and their endosymbionts, candidatus blochmannia.
    Degnan PH; Lazarus AB; Brock CD; Wernegreen JJ
    Syst Biol; 2004 Feb; 53(1):95-110. PubMed ID: 14965905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origins of the central Macaronesian psyllid lineages (Hemiptera; Psylloidea) with characterization of a new island radiation on endemic Convolvulus floridus (Convolvulaceae) in the Canary Islands.
    Bastin S; Reyes-Betancort JA; Siverio de la Rosa F; Percy DM
    PLoS One; 2024; 19(1):e0297062. PubMed ID: 38277393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular phylogenetic study of a myrmecophyte symbiosis: did Leonardoxa/ ant associations diversify via cospeciation?
    Chenuil A; McKey DB
    Mol Phylogenet Evol; 1996 Oct; 6(2):270-86. PubMed ID: 8899728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cospeciation of psyllids and their primary prokaryotic endosymbionts.
    Thao ML; Moran NA; Abbot P; Brennan EB; Burckhardt DH; Baumann P
    Appl Environ Microbiol; 2000 Jul; 66(7):2898-905. PubMed ID: 10877784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Symbionts in waiting: the dynamics of incipient endosymbiont complementation and replacement in minimal bacterial communities of psyllids.
    Morrow JL; Hall AAG; Riegler M
    Microbiome; 2017 Jun; 5(1):58. PubMed ID: 28587661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The origin and radiation of Macaronesian beetles breeding in Euphorbia: the relative importance of multiple data partitions and population sampling.
    Jordal BH; Hewitt GM
    Syst Biol; 2004 Oct; 53(5):711-34. PubMed ID: 15545251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenetic congruence of mealybugs and their primary endosymbionts.
    Downie DA; Gullan PJ
    J Evol Biol; 2005 Mar; 18(2):315-24. PubMed ID: 15715838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Host-plants shape insect diversity: phylogeny, origin, and species diversity of native Hawaiian leafhoppers (Cicadellidae: Nesophrosyne).
    Bennett GM; O'Grady PM
    Mol Phylogenet Evol; 2012 Nov; 65(2):705-17. PubMed ID: 22884527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Codivergence of the primary bacterial endosymbiont of psyllids versus host switches and replacement of their secondary bacterial endosymbionts.
    Hall AA; Morrow JL; Fromont C; Steinbauer MJ; Taylor GS; Johnson SN; Cook JM; Riegler M
    Environ Microbiol; 2016 Sep; 18(8):2591-603. PubMed ID: 27114069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Psyllid endosymbionts exhibit patterns of co-speciation with hosts and destabilizing substitutions in ribosomal RNA.
    Spaulding AW; von Dohlen CD
    Insect Mol Biol; 2001 Feb; 10(1):57-67. PubMed ID: 11240637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary history of nematodes associated with sweat bees.
    McFrederick QS; Taylor DR
    Mol Phylogenet Evol; 2013 Mar; 66(3):847-56. PubMed ID: 23159895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematics, biogeography and host-plant relationships of the Neotropical jumping plant-louse genus Russelliana (Hemiptera: Psylloidea).
    Serbina L; Burckhardt D
    Zootaxa; 2017 May; 4266(1):1-114. PubMed ID: 28610391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterns of association between crucifers and their flower-mimic pathogens: host jumps are more common than coevolution or cospeciation.
    Roy BA
    Evolution; 2001 Jan; 55(1):41-53. PubMed ID: 11263745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Both host-plant phylogeny and chemistry have shaped the African seed-beetle radiation.
    Kergoat GJ; Delobel A; Fédière G; Rü BL; Silvain JF
    Mol Phylogenet Evol; 2005 Jun; 35(3):602-11. PubMed ID: 15878129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biogeography explains cophylogenetic patterns in toucan chewing lice.
    Weckstein JD
    Syst Biol; 2004 Feb; 53(1):154-64. PubMed ID: 14965910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenetic characterization and molecular evolution of bacterial endosymbionts in psyllids (Hemiptera: Sternorrhyncha).
    Spaulding AW; von Dohlen CD
    Mol Biol Evol; 1998 Nov; 15(11):1506-13. PubMed ID: 12572614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cospeciation analysis of an obligate pollination mutualism: have Glochidion trees (Euphorbiaceae) and pollinating Epicephala moths (Gracillariidae) diversified in parallel?
    Kawakita A; Takimura A; Terachi T; Sota T; Kato M
    Evolution; 2004 Oct; 58(10):2201-14. PubMed ID: 15562685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.