These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 14966005)

  • 61. Sapwood Stored Resources Decline in Whitebark and Lodgepole Pines Attacked by Mountain Pine Beetles (Coleoptera: Curculionidae).
    Lahr EC; Sala A
    Environ Entomol; 2016 Dec; 45(6):1463-1475. PubMed ID: 28028093
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Growth responses of Scots pine to climatic factors on reclaimed oil shale mined land.
    Metslaid S; Stanturf JA; Hordo M; Korjus H; Laarmann D; Kiviste A
    Environ Sci Pollut Res Int; 2016 Jul; 23(14):13637-52. PubMed ID: 26573311
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Photosynthetic utilization efficiency of absorbed photosynthetically active radiation by Scots pine and birch forest stands in the southern Taiga.
    Molchanov AG
    Tree Physiol; 2000 Nov; 20(17):1137-1148. PubMed ID: 12651489
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands.
    Helmisaari HS; Derome J; Nöjd P; Kukkola M
    Tree Physiol; 2007 Oct; 27(10):1493-504. PubMed ID: 17669739
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Temporal dynamics of stem expansion and contraction in savanna trees: withdrawal and recharge of stored water.
    Scholz FC; Bucci SJ; Goldstein G; Meinzer FC; Franco AC; Miralles-Wilhelm F
    Tree Physiol; 2008 Mar; 28(3):469-80. PubMed ID: 18171669
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests.
    Rigling A; Bigler C; Eilmann B; Feldmeyer-Christe E; Gimmi U; Ginzler C; Graf U; Mayer P; Vacchiano G; Weber P; Wohlgemuth T; Zweifel R; Dobbertin M
    Glob Chang Biol; 2013 Jan; 19(1):229-40. PubMed ID: 23504734
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Within crown variation in the relationship between foliage biomass and sapwood area in jack pine.
    Schneider R; Berninger F; Ung CH; Mäkelä A; Swift DE; Zhang SY
    Tree Physiol; 2011 Jan; 31(1):22-9. PubMed ID: 21388999
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Respiratory potential in sapwood of old versus young ponderosa pine trees in the Pacific Northwest.
    Pruyn ML; Gartner BL; Harmon ME
    Tree Physiol; 2002 Feb; 22(2-3):105-16. PubMed ID: 11830407
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Growth CO2 concentration modifies the transpiration response of Populus deltoides to drought and vapor pressure deficit.
    Engel VC; Griffin KL; Murthy R; Patterson L; Klimas C; Potosnak M
    Tree Physiol; 2004 Oct; 24(10):1137-45. PubMed ID: 15294760
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Trait-specific responses of Scots pine to irrigation on a short vs long time scale.
    Feichtinger LM; Eilmann B; Buchmann N; Rigling A
    Tree Physiol; 2015 Feb; 35(2):160-71. PubMed ID: 25631531
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Co-occurring species differ in tree-ring delta(18)O trends.
    Marshall JD; Monserud RA
    Tree Physiol; 2006 Aug; 26(8):1055-66. PubMed ID: 16651255
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Tree stem diameter variations and transpiration in Scots pine: an analysis using a dynamic sap flow model.
    Perämäki M; Nikinmaa E; Sevanto S; Ilvesniemi H; Siivola E; Hari P; Vesala T
    Tree Physiol; 2001 Aug; 21(12-13):889-97. PubMed ID: 11498336
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Relationship of aluminium and calcium to net CO
    Reich PB; Oleksyn J; Tjoelker MG
    Oecologia; 1994 Feb; 97(1):82-92. PubMed ID: 28313592
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A method for reconstructing the development of the sapwood area of balsam fir.
    Coyea MR; Margolis HA; Gagnon RR
    Tree Physiol; 1990 Sep; 6(3):283-91. PubMed ID: 14972939
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Axial and radial water transport and internal water storage in tropical forest canopy trees.
    James SA; Meinzer FC; Goldstein G; Woodruff D; Jones T; Restom T; Mejia M; Clearwater M; Campanello P
    Oecologia; 2003 Jan; 134(1):37-45. PubMed ID: 12647177
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Water availability and genetic effects on water relations of loblolly pine (Pinus taeda) stands.
    Gonzalez-Benecke CA; Martin TA
    Tree Physiol; 2010 Mar; 30(3):376-92. PubMed ID: 20071360
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Xylem conductivity and vulnerability to cavitation of ponderosa pine growing in contrasting climates.
    Maherali H; DeLucia EH
    Tree Physiol; 2000 Jul; 20(13):859-67. PubMed ID: 11303576
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Relationships between stem diameter, sapwood area, leaf area and transpiration in a young mountain ash forest.
    Vertessy RA; Benyon RG; O'Sullivan SK; Gribben PR
    Tree Physiol; 1995 Sep; 15(9):559-67. PubMed ID: 14965913
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Throughfall, stemflow, and interception characteristics of coniferous forest ecosystems in the western black sea region of Turkey (Daday example).
    Aydın M; Güneş Şen S; Celik S
    Environ Monit Assess; 2018 Apr; 190(5):316. PubMed ID: 29713807
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [Sap flow characteristics of Quercus liaotungensis in response to sapwood area and soil moisture in the loess hilly region, China].
    Lyu JL; He QY; Yan MJ; Li GQ; Du S
    Ying Yong Sheng Tai Xue Bao; 2018 Mar; 29(3):725-731. PubMed ID: 29722212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.