These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 14966007)

  • 1. Water relations and growth of loblolly pine seedlings planted under a shelterwood and in a clear-cut.
    Dalton CT; Messina MG
    Tree Physiol; 1995 Jan; 15(1):19-26. PubMed ID: 14966007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of overstory density on ecophysiology of red oak (Quercus rubra) and sugar maple (Acer saccharum) seedlings in central Ontario shelterwoods.
    Parker WC; Dey DC
    Tree Physiol; 2008 May; 28(5):797-804. PubMed ID: 18316311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in leaf gas exchange and water relations among species and tree sizes in an Arizona pine-oak forest.
    Kolb TE; Stone JE
    Tree Physiol; 2000 Jan; 20(1):1-12. PubMed ID: 12651521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of phenology, water availability and seed source on loblolly pine biomass partitioning and transpiration.
    Barnes AD
    Tree Physiol; 2002 Jul; 22(10):733-40. PubMed ID: 12091155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of CO
    Tolley LC; Strain BR
    Oecologia; 1985 Jan; 65(2):166-172. PubMed ID: 28310662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production efficiency of loblolly pine and sweetgum in response to four years of intensive management.
    Samuelson L; Stokes T; Cooksey T; McLemore P
    Tree Physiol; 2001 Apr; 21(6):369-76. PubMed ID: 11282576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda (loblolly pine) to long-term growth in elevated CO(2) (free-air CO(2) enrichment) and N-fertilization.
    Domec JC; Palmroth S; Ward E; Maier CA; Thérézien M; Oren R
    Plant Cell Environ; 2009 Nov; 32(11):1500-12. PubMed ID: 19558405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaf-level gas-exchange uniformity and photosynthetic capacity among loblolly pine (Pinus taeda L.) genotypes of contrasting inherent genetic variation.
    Aspinwall MJ; King JS; McKeand SE; Domec JC
    Tree Physiol; 2011 Jan; 31(1):78-91. PubMed ID: 21389004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Population dynamics and growth patterns for a cohort of northern red oak (Quercus rubra) seedlings.
    Crow TR
    Oecologia; 1992 Aug; 91(2):192-200. PubMed ID: 28313456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaf traits in relation to crown development, light interception and growth of elite families of loblolly and slash pine.
    Chmura DJ; Tjoelker MG
    Tree Physiol; 2008 May; 28(5):729-42. PubMed ID: 18316305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Branch growth and gas exchange in 13-year-old loblolly pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization.
    Maier CA; Johnsen KH; Butnor J; Kress LW; Anderson PH
    Tree Physiol; 2002 Nov; 22(15-16):1093-106. PubMed ID: 12414369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thinning, fertilization, and crown position interact to control physiological responses of loblolly pine.
    Tang Z; Chambers JL; Guddanti S; Barmett JP
    Tree Physiol; 1999 Feb; 19(2):87-94. PubMed ID: 12651587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diurnal changes in water conduction in loblolly pine (Pinus taeda) and Virginia pine (P. virginiana) during soil dehydration.
    Wakamiya-Noborio I; Heilman JL; Newton RJ; Messina MG
    Tree Physiol; 1999 Jul; 19(9):575-581. PubMed ID: 12651531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water availability and genetic effects on water relations of loblolly pine (Pinus taeda) stands.
    Gonzalez-Benecke CA; Martin TA
    Tree Physiol; 2010 Mar; 30(3):376-92. PubMed ID: 20071360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Responses of loblolly pine, sweetgum and crab grass roots to localized increases in nitrogen in two watering regimes.
    Ludovici KH; Morris LA
    Tree Physiol; 1996; 16(11_12):933-939. PubMed ID: 14871786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water relations and gas exchange of Acer saccharum seedlings in contrasting natural light and water regimes.
    Ellsworth DS; Reich PB
    Tree Physiol; 1992 Jan; 10(1):1-20. PubMed ID: 14969871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Planting stress in newly planted jack pine and white spruce. 2. Changes in tissue water potential components.
    Grossnickle SC
    Tree Physiol; 1988 Mar; 4(1):85-97. PubMed ID: 14972838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diplodia pinea, the Cause of Diplodia Blight of Pines, Confirmed in Alabama, Louisiana, and Mississippi.
    Stanosz GR; Smith DR; Fraedrich SW; Baird RE; Mangini A
    Plant Dis; 2009 Feb; 93(2):198. PubMed ID: 30764123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of stand density and canopy structure on the germination and growth of Scots pine (Pinus sylvestris L.) seedlings.
    Kara F; Topaçoğlu O
    Environ Monit Assess; 2018 Nov; 190(12):749. PubMed ID: 30498861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fall lifting and long-term freezer storage of ponderosa pine seedlings: effects on post-storage leaf water potential, stomatal conductance, and root growth potential.
    Omi SK; Yoder B; Rose R
    Tree Physiol; 1991 Apr; 8(3):315-25. PubMed ID: 14972882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.