These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 14966122)

  • 1. The catalytic and kinetic mechanisms of NADPH-dependent alkenal/one oxidoreductase.
    Dick RA; Kensler TW
    J Biol Chem; 2004 Apr; 279(17):17269-77. PubMed ID: 14966122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic and mechanistic analysis of the E. coli panE-encoded ketopantoate reductase.
    Zheng R; Blanchard JS
    Biochemistry; 2000 Apr; 39(13):3708-17. PubMed ID: 10736170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic and chemical mechanisms of the fabG-encoded Streptococcus pneumoniae beta-ketoacyl-ACP reductase.
    Patel MP; Liu WS; West J; Tew D; Meek TD; Thrall SH
    Biochemistry; 2005 Dec; 44(50):16753-65. PubMed ID: 16342966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate specificity and kinetic isotope effect analysis of the Eschericia coli ketopantoate reductase.
    Zheng R; Blanchard JS
    Biochemistry; 2003 Sep; 42(38):11289-96. PubMed ID: 14503879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antioxidative function and substrate specificity of NAD(P)H-dependent alkenal/one oxidoreductase. A new role for leukotriene B4 12-hydroxydehydrogenase/15-oxoprostaglandin 13-reductase.
    Dick RA; Kwak MK; Sutter TR; Kensler TW
    J Biol Chem; 2001 Nov; 276(44):40803-10. PubMed ID: 11524419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mycobacterium tuberculosis beta-ketoacyl-ACP reductase: alpha-secondary kinetic isotope effects and kinetic and equilibrium mechanisms of substrate binding.
    Silva RG; Rosado LA; Santos DS; Basso LA
    Arch Biochem Biophys; 2008 Mar; 471(1):1-10. PubMed ID: 18155153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human liver aldehyde reductase: pH dependence of steady-state kinetic parameters.
    Bhatnagar A; Das B; Liu SQ; Srivastava SK
    Arch Biochem Biophys; 1991 Jun; 287(2):329-36. PubMed ID: 1654814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic study of the catalytic mechanism of mannitol dehydrogenase from Pseudomonas fluorescens.
    Slatner M; Nidetzky B; Kulbe KD
    Biochemistry; 1999 Aug; 38(32):10489-98. PubMed ID: 10441145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic mechanism and substrate specificity of the beta-subunit of the voltage-gated potassium channel.
    Tipparaju SM; Barski OA; Srivastava S; Bhatnagar A
    Biochemistry; 2008 Aug; 47(34):8840-54. PubMed ID: 18672894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein (ACP) reductase: kinetic and chemical mechanisms.
    Silva RG; de Carvalho LP; Blanchard JS; Santos DS; Basso LA
    Biochemistry; 2006 Oct; 45(43):13064-73. PubMed ID: 17059223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mycobacterium tuberculosis mycothione reductase: pH dependence of the kinetic parameters and kinetic isotope effects.
    Patel MP; Blanchard JS
    Biochemistry; 2001 May; 40(17):5119-26. PubMed ID: 11318633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic and chemical mechanisms of shikimate dehydrogenase from Mycobacterium tuberculosis.
    Fonseca IO; Silva RG; Fernandes CL; de Souza ON; Basso LA; Santos DS
    Arch Biochem Biophys; 2007 Jan; 457(2):123-33. PubMed ID: 17178095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic reaction profile for NADH-dependent reduction of aromatic aldehydes by xylose reductase from Candida tenuis.
    Mayr P; Nidetzky B
    Biochem J; 2002 Sep; 366(Pt 3):889-99. PubMed ID: 12003638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic characterization of the C-terminal domain of Malonyl-CoA reductase.
    Cavuzic MT; de Sousa AS; Lohman JR; Waldrop GL
    Biochim Biophys Acta Proteins Proteom; 2024 Sep; 1872(5):141033. PubMed ID: 39019246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and mechanistic properties of biotin sulfoxide reductase.
    Pollock VV; Barber MJ
    Biochemistry; 2001 Feb; 40(5):1430-40. PubMed ID: 11170471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic mechanisms in the reduction of aldehydes and ketones catalyzed by rabbit liver aldehyde reductases and hydroxysteroid dehydrogenases.
    Sawada H; Hara A; Nakayama T; Hayashibara M
    J Biochem; 1982 Jul; 92(1):185-91. PubMed ID: 6749832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Examining the relative timing of hydrogen abstraction steps during NAD(+)-dependent oxidation of secondary alcohols catalyzed by long-chain D-mannitol dehydrogenase from Pseudomonas fluorescens using pH and kinetic isotope effects.
    Klimacek M; Nidetzky B
    Biochemistry; 2002 Aug; 41(31):10158-65. PubMed ID: 12146981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ; Scrutton NS; Munro AW
    Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic investigation of a highly active phosphite dehydrogenase mutant and its application for NADPH regeneration.
    Woodyer R; Zhao H; van der Donk WA
    FEBS J; 2005 Aug; 272(15):3816-27. PubMed ID: 16045753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding-equilibrium and kinetic studies of anthocyanidin reductase from Vitis vinifera.
    Gargouri M; Gallois B; Chaudière J
    Arch Biochem Biophys; 2009 Nov; 491(1-2):61-8. PubMed ID: 19772852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.