These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 14967017)

  • 21. A fluorescence method to define transmembrane alpha-helices in membrane proteins: studies with bacterial diacylglycerol kinase.
    Jittikoon J; East JM; Lee AG
    Biochemistry; 2007 Sep; 46(38):10950-9. PubMed ID: 17722884
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A single hydrophobic to hydrophobic substitution in the transmembrane domain impairs aspartate receptor function.
    Jeffery CJ; Koshland DE
    Biochemistry; 1994 Mar; 33(12):3457-63. PubMed ID: 8142342
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of a conserved alpha-helix in the kinase-docking region of the aspartate receptor by cysteine and disulfide scanning.
    Bass RB; Falke JJ
    J Biol Chem; 1998 Sep; 273(39):25006-14. PubMed ID: 9737956
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential repositioning of the second transmembrane helices from E. coli Tar and EnvZ upon moving the flanking aromatic residues.
    Botelho SC; Enquist K; von Heijne G; Draheim RR
    Biochim Biophys Acta; 2015 Feb; 1848(2):615-21. PubMed ID: 25445668
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrogen exchange differences between chemoreceptor signaling complexes localize to functionally important subdomains.
    Koshy SS; Li X; Eyles SJ; Weis RM; Thompson LK
    Biochemistry; 2014 Dec; 53(49):7755-64. PubMed ID: 25420045
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mutational analysis of a transmembrane segment in a bacterial chemoreceptor.
    Baumgartner JW; Hazelbauer GL
    J Bacteriol; 1996 Aug; 178(15):4651-60. PubMed ID: 8755897
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tertiary contacts of helix V in the lactose permease determined by site-directed chemical cross-linking in situ.
    Wu J; Hardy D; Kaback HR
    Biochemistry; 1999 Feb; 38(8):2320-5. PubMed ID: 10029525
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transmembrane signalling and the aspartate receptor.
    Scott WG; Stoddard BL
    Structure; 1994 Sep; 2(9):877-87. PubMed ID: 7812719
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sequence dependence of BNIP3 transmembrane domain dimerization implicates side-chain hydrogen bonding and a tandem GxxxG motif in specific helix-helix interactions.
    Sulistijo ES; MacKenzie KR
    J Mol Biol; 2006 Dec; 364(5):974-90. PubMed ID: 17049556
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Position-dependence of stabilizing polar interactions of asparagine in transmembrane helical bundles.
    Lear JD; Gratkowski H; Adamian L; Liang J; DeGrado WF
    Biochemistry; 2003 Jun; 42(21):6400-7. PubMed ID: 12767221
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The region preceding the C-terminal NWETF pentapeptide modulates baseline activity and aspartate inhibition of Escherichia coli Tar.
    Lai RZ; Bormans AF; Draheim RR; Wright GA; Manson MD
    Biochemistry; 2008 Dec; 47(50):13287-95. PubMed ID: 19053273
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrogen exchange mass spectrometry of functional membrane-bound chemotaxis receptor complexes.
    Koshy SS; Eyles SJ; Weis RM; Thompson LK
    Biochemistry; 2013 Dec; 52(49):8833-42. PubMed ID: 24274333
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of aromatic residues at the lipid-water interface in micelle-bound bacteriophage M13 major coat protein.
    Yuen CT; Davidson AR; Deber CM
    Biochemistry; 2000 Dec; 39(51):16155-62. PubMed ID: 11123944
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling the transmembrane domain of bacterial chemoreceptors.
    Peach ML; Hazelbauer GL; Lybrand TP
    Protein Sci; 2002 Apr; 11(4):912-23. PubMed ID: 11910034
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Site-directed rotational resonance solid-state NMR distance measurements probe structure and mechanism in the transmembrane domain of the serine bacterial chemoreceptor.
    Isaac B; Gallagher GJ; Balazs YS; Thompson LK
    Biochemistry; 2002 Mar; 41(9):3025-36. PubMed ID: 11863441
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure and dynamics of transmembrane signaling by the Escherichia coli aspartate receptor.
    Stoddard BL; Bui JD; Koshland DE
    Biochemistry; 1992 Dec; 31(48):11978-83. PubMed ID: 1457398
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The cytoplasmic fragment of the aspartate receptor displays globally dynamic behavior.
    Seeley SK; Weis RM; Thompson LK
    Biochemistry; 1996 Apr; 35(16):5199-206. PubMed ID: 8611504
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of interfacial tryptophan residues on an arginine-flanked transmembrane helix.
    Sustich SJ; Afrose F; Greathouse DV; Koeppe RE
    Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183134. PubMed ID: 31738898
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Escherichia coli aspartate receptor: sequence specificity of a transmembrane helix studied by hydrophobic-biased random mutagenesis.
    Jeffery CJ; Koshland DE
    Protein Eng; 1999 Oct; 12(10):863-72. PubMed ID: 10556247
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular mechanism of transmembrane signaling by the aspartate receptor: a model.
    Chervitz SA; Falke JJ
    Proc Natl Acad Sci U S A; 1996 Mar; 93(6):2545-50. PubMed ID: 8637911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.