BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 14967029)

  • 1. Esters of mandelic acid as substrates for (S)-mandelate dehydrogenase from Pseudomonas putida: implications for the reaction mechanism.
    Dewanti AR; Xu Y; Mitra B
    Biochemistry; 2004 Feb; 43(7):1883-90. PubMed ID: 14967029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A transient intermediate in the reaction catalyzed by (S)-mandelate dehydrogenase from Pseudomonas putida.
    Dewanti AR; Mitra B
    Biochemistry; 2003 Nov; 42(44):12893-901. PubMed ID: 14596603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. (S)-Mandelate dehydrogenase from Pseudomonas putida: mutations of the catalytic base histidine-274 and chemical rescue of activity.
    Lehoux IE; Mitra B
    Biochemistry; 1999 Aug; 38(31):9948-55. PubMed ID: 10433701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of glycine 81 in (S)-mandelate dehydrogenase from Pseudomonas putida in substrate specificity and oxidase activity.
    Dewanti AR; Xu Y; Mitra B
    Biochemistry; 2004 Aug; 43(33):10692-700. PubMed ID: 15311930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arginine 165/arginine 277 pair in (S)-mandelate dehydrogenase from Pseudomonas putida: role in catalysis and substrate binding.
    Xu Y; Dewanti AR; Mitra B
    Biochemistry; 2002 Oct; 41(41):12313-9. PubMed ID: 12369819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. (S)-Mandelate dehydrogenase from Pseudomonas putida: mechanistic studies with alternate substrates and pH and kinetic isotope effects.
    Lehoux IE; Mitra B
    Biochemistry; 1999 May; 38(18):5836-48. PubMed ID: 10231535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophobic nature of the active site of mandelate racemase.
    St Maurice M; Bearne SL
    Biochemistry; 2004 Mar; 43(9):2524-32. PubMed ID: 14992589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of arginine 277 in (S)-mandelate dehydrogenase from Pseudomonas putida in substrate binding and transition state stabilization.
    Lehoux IE; Mitra B
    Biochemistry; 2000 Aug; 39(33):10055-65. PubMed ID: 10955993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxamates as substrates and inhibitors for FMN-dependent 2-hydroxy acid dehydrogenases.
    Amar D; North P; Miskiniene V; Cénas N; Lederer F
    Bioorg Chem; 2002 Jun; 30(3):145-62. PubMed ID: 12406701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A highly active, soluble mutant of the membrane-associated (S)-mandelate dehydrogenase from Pseudomonas putida.
    Xu Y; Mitra B
    Biochemistry; 1999 Sep; 38(38):12367-76. PubMed ID: 10493804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction intermediate analogues for mandelate racemase: interaction between Asn 197 and the alpha-hydroxyl of the substrate promotes catalysis.
    St Maurice M; Bearne SL
    Biochemistry; 2000 Nov; 39(44):13324-35. PubMed ID: 11063568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of the reaction catalyzed by mandelate racemase: structure and mechanistic properties of the K166R mutant.
    Kallarakal AT; Mitra B; Kozarich JW; Gerlt JA; Clifton JG; Petsko GA; Kenyon GL
    Biochemistry; 1995 Mar; 34(9):2788-97. PubMed ID: 7893690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and kinetic studies on native intermediates and an intermediate analogue in benzoylformate decarboxylase reveal a least motion mechanism with an unprecedented short-lived predecarboxylation intermediate.
    Bruning M; Berheide M; Meyer D; Golbik R; Bartunik H; Liese A; Tittmann K
    Biochemistry; 2009 Apr; 48(15):3258-68. PubMed ID: 19182954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redefining the minimal substrate tolerance of mandelate racemase. Racemization of trifluorolactate.
    Nagar M; Narmandakh A; Khalak Y; Bearne SL
    Biochemistry; 2011 Oct; 50(41):8846-52. PubMed ID: 21894901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of the reaction catalyzed by mandelate racemase: structure and mechanistic properties of the D270N mutant.
    Schafer SL; Barrett WC; Kallarakal AT; Mitra B; Kozarich JW; Gerlt JA; Clifton JG; Petsko GA; Kenyon GL
    Biochemistry; 1996 May; 35(18):5662-9. PubMed ID: 8639525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermediates and transition states in thiamin diphosphate-dependent decarboxylases. A kinetic and NMR study on wild-type indolepyruvate decarboxylase and variants using indolepyruvate, benzoylformate, and pyruvate as substrates.
    Schütz A; Golbik R; König S; Hübner G; Tittmann K
    Biochemistry; 2005 Apr; 44(16):6164-79. PubMed ID: 15835904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures of the G81A mutant form of the active chimera of (S)-mandelate dehydrogenase and its complex with two of its substrates.
    Sukumar N; Dewanti A; Merli A; Rossi GL; Mitra B; Mathews FS
    Acta Crystallogr D Biol Crystallogr; 2009 Jun; 65(Pt 6):543-52. PubMed ID: 19465768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An assay for mandelate racemase using high-performance liquid chromatography.
    Bearne SL; St Maurice M; Vaughan MD
    Anal Biochem; 1999 May; 269(2):332-6. PubMed ID: 10222006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and kinetic analysis of catalysis by a thiamin diphosphate-dependent enzyme, benzoylformate decarboxylase.
    Polovnikova ES; McLeish MJ; Sergienko EA; Burgner JT; Anderson NL; Bera AK; Jordan F; Kenyon GL; Hasson MS
    Biochemistry; 2003 Feb; 42(7):1820-30. PubMed ID: 12590569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perturbing the hydrophobic pocket of mandelate racemase to probe phenyl motion during catalysis.
    Siddiqi F; Bourque JR; Jiang H; Gardner M; St Maurice M; Blouin C; Bearne SL
    Biochemistry; 2005 Jun; 44(25):9013-21. PubMed ID: 15966725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.