These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 14967241)

  • 21. Entropy calculations on a reversibly folding peptide: changes in solute free energy cannot explain folding behavior.
    Schäfer H; Daura X; Mark AE; van Gunsteren WF
    Proteins; 2001 Apr; 43(1):45-56. PubMed ID: 11170213
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein folding kinetics: timescales, pathways and energy landscapes in terms of sequence-dependent properties.
    Veitshans T; Klimov D; Thirumalai D
    Fold Des; 1997; 2(1):1-22. PubMed ID: 9080195
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the driving forces for protein-protein association.
    Ben-Naim A
    J Chem Phys; 2006 Jul; 125(2):24901. PubMed ID: 16848605
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the conformational stability of oligonucleotide duplexes and tRNA molecules.
    Ponnuswamy PK; Gromiha MM
    J Theor Biol; 1994 Aug; 169(4):419-32. PubMed ID: 7526075
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of long- and short-range hydrophobic, hydrophilic and charged residues contact network in protein's structural organization.
    Sengupta D; Kundu S
    BMC Bioinformatics; 2012 Jun; 13():142. PubMed ID: 22720789
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease.
    Sham YY; Chu ZT; Tao H; Warshel A
    Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Empirical free energy calculation: comparison to calorimetric data.
    Weng Z; Delisi C; Vajda S
    Protein Sci; 1997 Sep; 6(9):1976-84. PubMed ID: 9300497
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Importance of metastable states in the free energy landscapes of polypeptide chains.
    Auer S; Miller MA; Krivov SV; Dobson CM; Karplus M; Vendruscolo M
    Phys Rev Lett; 2007 Oct; 99(17):178104. PubMed ID: 17995375
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Maximum entropy, analysis of kinetic processes involving chemical and folding-unfolding changes in proteins.
    Plaza del Pino IM; Parody-Morreale A; Sanchez-Ruiz JM
    Anal Biochem; 1997 Jan; 244(2):239-55. PubMed ID: 9025940
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of a pattern in protein structure based on energetic and statistical considerations.
    Amadei A; Vallone B
    Proteins; 1996 Jan; 24(1):35-50. PubMed ID: 8628732
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of main-chain electrostatics, hydrophobic effect and side-chain conformational entropy in determining the secondary structure of proteins.
    Avbelj F; Fele L
    J Mol Biol; 1998 Jun; 279(3):665-84. PubMed ID: 9641985
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Funnels, pathways, and the energy landscape of protein folding: a synthesis.
    Bryngelson JD; Onuchic JN; Socci ND; Wolynes PG
    Proteins; 1995 Mar; 21(3):167-95. PubMed ID: 7784423
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model.
    Vorobjev YN; Almagro JC; Hermans J
    Proteins; 1998 Sep; 32(4):399-413. PubMed ID: 9726412
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polar and nonpolar atomic environments in the protein core: implications for folding and binding.
    Koehl P; Delarue M
    Proteins; 1994 Nov; 20(3):264-78. PubMed ID: 7892175
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting free energy contributions to the conformational stability of folded proteins from the residue sequence with radial basis function networks.
    Casadio R; Compiani M; Fariselli P; Vivarelli F
    Proc Int Conf Intell Syst Mol Biol; 1995; 3():81-8. PubMed ID: 7584470
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calculation of proteins' total side-chain torsional entropy and its influence on protein-ligand interactions.
    DuBay KH; Geissler PL
    J Mol Biol; 2009 Aug; 391(2):484-97. PubMed ID: 19481551
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interpretation of protein folding psi values.
    Bodenreider C; Kiefhaber T
    J Mol Biol; 2005 Aug; 351(2):393-401. PubMed ID: 16005895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved design of stable and fast-folding model proteins.
    Abkevich VI; Gutin AM; Shakhnovich EI
    Fold Des; 1996; 1(3):221-30. PubMed ID: 9079383
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure-based calculation of the equilibrium folding pathway of proteins. Correlation with hydrogen exchange protection factors.
    Hilser VJ; Freire E
    J Mol Biol; 1996 Oct; 262(5):756-72. PubMed ID: 8876652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nucleation-based prediction of the protein folding rate and its correlation with the folding nucleus size.
    Galzitskaya OV; Glyakina AV
    Proteins; 2012 Dec; 80(12):2711-27. PubMed ID: 22865614
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.