These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 14967470)

  • 1. Exploring detergent insolubility in bovine hippocampal membranes: a critical assessment of the requirement for cholesterol.
    Pucadyil TJ; Chattopadhyay A
    Biochim Biophys Acta; 2004 Feb; 1661(1):9-17. PubMed ID: 14967470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors determining detergent resistance of erythrocyte membranes.
    Rodi PM; Trucco VM; Gennaro AM
    Biophys Chem; 2008 Jun; 135(1-3):14-8. PubMed ID: 18394774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains.
    Schroeder RJ; Ahmed SN; Zhu Y; London E; Brown DA
    J Biol Chem; 1998 Jan; 273(2):1150-7. PubMed ID: 9422781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of the interaction of CHAPS and Triton X-100 with the erythrocyte membrane.
    Rodi PM; Bocco Gianello MD; Corregido MC; Gennaro AM
    Biochim Biophys Acta; 2014 Mar; 1838(3):859-66. PubMed ID: 24239862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts).
    London E; Brown DA
    Biochim Biophys Acta; 2000 Nov; 1508(1-2):182-95. PubMed ID: 11090825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereospecific requirement of cholesterol in the function of the serotonin1A receptor.
    Jafurulla M; Rao BD; Sreedevi S; Ruysschaert JM; Covey DF; Chattopadhyay A
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):158-63. PubMed ID: 24008092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-melting lipid mixtures and the origin of detergent-resistant membranes studied with temperature-solubilization diagrams.
    Sot J; Manni MM; Viguera AR; Castañeda V; Cano A; Alonso C; Gil D; Valle M; Alonso A; Goñi FM
    Biophys J; 2014 Dec; 107(12):2828-2837. PubMed ID: 25517149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of GPI-anchored enzyme in liposome detergent-resistance.
    Morandat S; Bortolato M; Roux B
    J Membr Biol; 2003 Feb; 191(3):215-21. PubMed ID: 12571756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phospholipid solubilization during detergent extraction of rhodopsin from photoreceptor disk membranes.
    Aveldaño MI
    Arch Biochem Biophys; 1995 Dec; 324(2):331-43. PubMed ID: 8554325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detergent solubilization of bovine erythrocytes. Comparison between the insoluble material and the intact membrane.
    Rodi PM; Cabeza MS; Gennaro AM
    Biophys Chem; 2006 Jul; 122(2):114-22. PubMed ID: 16580771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring the organization and dynamics of bovine hippocampal membranes utilizing Laurdan generalized polarization.
    Mukherjee S; Chattopadhyay A
    Biochim Biophys Acta; 2005 Aug; 1714(1):43-55. PubMed ID: 16042963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detergent solubilization of phosphatidylcholine bilayers in the fluid state: influence of the acyl chain structure.
    Ahyayauch H; Larijani B; Alonso A; Goñi FM
    Biochim Biophys Acta; 2006 Feb; 1758(2):190-6. PubMed ID: 16579963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential sensitivity to detergents of actin cytoskeleton from nerve endings.
    Cubí R; Matas LA; Pou M; Aguilera J; Gil C
    Biochim Biophys Acta; 2013 Nov; 1828(11):2385-93. PubMed ID: 23817010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triton X-100 partitioning into sphingomyelin bilayers at subsolubilizing detergent concentrations: effect of lipid phase and a comparison with dipalmitoylphosphatidylcholine.
    Arnulphi C; Sot J; García-Pacios M; Arrondo JL; Alonso A; Goñi FM
    Biophys J; 2007 Nov; 93(10):3504-14. PubMed ID: 17675347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers.
    Sot J; Bagatolli LA; Goñi FM; Alonso A
    Biophys J; 2006 Feb; 90(3):903-14. PubMed ID: 16284266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of increasing concentrations of nonionic detergent Triton X-100 on solubilization and structure of rat liver and adipose plasma membranes.
    Yegutkin GG
    Membr Cell Biol; 1997; 10(5):515-20. PubMed ID: 9225255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes.
    Ahmed SN; Brown DA; London E
    Biochemistry; 1997 Sep; 36(36):10944-53. PubMed ID: 9283086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholesterol depletion modulates detergent resistant fraction of human serotonin(1A) receptors.
    Sahu SK; Saxena R; Chattopadhyay A
    Mol Membr Biol; 2012 Nov; 29(7):290-8. PubMed ID: 22594670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane organization of the human serotonin(1A) receptor monitored by detergent insolubility using GFP fluorescence.
    Kalipatnapu S; Chattopadhyay A
    Mol Membr Biol; 2005; 22(6):539-47. PubMed ID: 16373325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solubilization of myelin membranes by detergents.
    Aveldaño MI; Díaz RS; Regueiro P; Monreal J
    J Neurochem; 1991 Jul; 57(1):250-7. PubMed ID: 1711097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.