These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 14967503)

  • 1. Prioritisation of abstraction boreholes at risk from chlorinated solvent contamination on the UK Permo-Triassic Sandstone aquifer using a GIS.
    Tait NG; Lerner DN; Smith JW; Leharne SA
    Sci Total Environ; 2004 Feb; 319(1-3):77-98. PubMed ID: 14967503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The legacy of chlorinated solvents in the Birmingham aquifer, UK: observations spanning three decades and the challenge of future urban groundwater development.
    Rivett MO; Turner RJ; Glibbery Née Murcott P; Cuthbert MO
    J Contam Hydrol; 2012 Oct; 140-141():107-23. PubMed ID: 23022878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling of recharge and pollutant fluxes to urban groundwaters.
    Thomas A; Tellam J
    Sci Total Environ; 2006 May; 360(1-3):158-79. PubMed ID: 16325236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Knowledge of ground water contamination caused by volatile chlorinated hydrocarbons in Pleistocene glaciofluvial sediments and deposits for preventive and restorative measures].
    Hagendorf U
    Schriftenr Ver Wasser Boden Lufthyg; 1986; 64():45-63. PubMed ID: 3726469
    [No Abstract]   [Full Text] [Related]  

  • 5. Assessing the impact of VOC-contaminated groundwater on surface water at the city scale.
    Ellis PA; Rivett MO
    J Contam Hydrol; 2007 Apr; 91(1-2):107-27. PubMed ID: 17182150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of principal component analysis to profile temporal and spatial variations of chlorinated solvent concentration in groundwater.
    Lucas L; Jauzein M
    Environ Pollut; 2008 Jan; 151(1):205-12. PubMed ID: 17540487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorinated solvents in groundwater of the United States.
    Moran MJ; Zogorski JS; Squillace PJ
    Environ Sci Technol; 2007 Jan; 41(1):74-81. PubMed ID: 17265929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sediment filled fractures in the Permo-Triassic sandstones of the Cheshire basin: observations and implications for pollutant transport.
    Wealthall GP; Steele A; Bloomfield JP; Moss RH; Lerner DN
    J Contam Hydrol; 2001 Jul; 50(1-2):41-51. PubMed ID: 11475160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial contamination of two urban sandstone aquifers in the UK.
    Powell KL; Taylor RG; Cronin AA; Barrett MH; Pedley S; Sellwood J; Trowsdale SA; Lerner DN
    Water Res; 2003 Jan; 37(2):339-52. PubMed ID: 12502063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying crop vulnerability to groundwater abstraction: modelling and expert knowledge in a GIS.
    Procter C; Comber L; Betson M; Buckley D; Frost A; Lyons H; Riding A; Voyce K
    J Environ Manage; 2006 Nov; 81(3):296-306. PubMed ID: 16963176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing flow pathways in a sandstone aquifer: Tectonic vs sedimentary heterogeneities.
    Medici G; West LJ; Mountney NP
    J Contam Hydrol; 2016 Nov; 194():36-58. PubMed ID: 27969550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Groundwater vulnerability assessment for the Banyas Catchment of the Syrian coastal area using GIS and the RISKE method.
    Kattaa B; Al-Fares W; Al Charideh AR
    J Environ Manage; 2010 May; 91(5):1103-10. PubMed ID: 20133034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of groundwater vulnerability in the Yinchuan Plain, Northwest China using OREADIC.
    Qian H; Li P; Howard KW; Yang C; Zhang X
    Environ Monit Assess; 2012 Jun; 184(6):3613-28. PubMed ID: 21773864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Groundwater abstraction pollution risk assessment.
    Lytton L; Howe S; Sage R; Greenaway P
    Water Sci Technol; 2003; 47(9):1-7. PubMed ID: 12830933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A GIS-based vulnerability assessment of brine contamination to aquatic resources from oil and gas development in eastern Sheridan County, Montana.
    Preston TM; Chesley-Preston TL; Thamke JN
    Sci Total Environ; 2014 Feb; 472():1152-62. PubMed ID: 24364993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool.
    Nobre RC; Rotunno Filho OC; Mansur WJ; Nobre MM; Cosenza CA
    J Contam Hydrol; 2007 Dec; 94(3-4):277-92. PubMed ID: 17728007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Risk assessment and prioritisation of contaminated sites on the catchment scale.
    Troldborg M; Lemming G; Binning PJ; Tuxen N; Bjerg PL
    J Contam Hydrol; 2008 Oct; 101(1-4):14-28. PubMed ID: 18768238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system.
    Babiker IS; Mohamed MA; Terao H; Kato K; Ohta K
    Environ Int; 2004 Feb; 29(8):1009-17. PubMed ID: 14680883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Migration of contaminants through the unsaturated zone overlying the Hesbaye chalky aquifer in Belgium: a field investigation.
    Brouyère S; Dassargues A; Hallet V
    J Contam Hydrol; 2004 Aug; 72(1-4):135-64. PubMed ID: 15240170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing Plain, China.
    Wang J; He J; Chen H
    Sci Total Environ; 2012 Aug; 432():216-26. PubMed ID: 22750168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.