BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 14967515)

  • 1. Trends of radionuclide sorption by estuarine sediments. Experimental studies using 133Ba as a tracer.
    Barros H; Laissaoui A; Abril JM
    Sci Total Environ; 2004 Feb; 319(1-3):253-67. PubMed ID: 14967515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and modelling study on the uptake and desorption kinetics of 133Ba by suspended estuarine sediments from southern Spain.
    Barros H; Abril JM
    Water Res; 2004 Feb; 38(3):749-55. PubMed ID: 14723945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring and modelling temporal trends of 226Ra in waters of a Spanish estuary affected by the phosphate industry.
    Periáñez R
    Mar Environ Res; 2005 Jul; 60(1):35-49. PubMed ID: 15649526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport and distribution of lindane and simazine in a riverine environment: measurements in bed sediments and modelling.
    Allan IJ; House WA; Parker A; Carter JE
    Pest Manag Sci; 2004 May; 60(5):417-33. PubMed ID: 15154508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A modelling study on 137Cs and 239,240Pu behaviour in the Alborán Sea, western Mediterranean.
    Periáñez R
    J Environ Radioact; 2008 Apr; 99(4):694-715. PubMed ID: 18031877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partitioning of radiostrontium in marine aqueous suspensions: laboratory experiments and modeling studies.
    Benkdad A; Laissaoui A; El Bari H; Benmansour M; Ibnmajah M
    J Environ Radioact; 2008 Apr; 99(4):748-56. PubMed ID: 18061319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of recording physical and chemical variables simultaneously with remote radiological surveillance of aquatic systems: a perspective for environmental modelling.
    Abril JM; El-Mrabet R; Barros H
    J Environ Radioact; 2004; 72(1-2):145-52. PubMed ID: 15162866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing the behaviour of different kinetic models for uptake/release of radionuclides between water and sediments when implemented in a marine dispersion model.
    Periáñez R
    J Environ Radioact; 2004; 71(3):243-59. PubMed ID: 14613710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioavailability of sediment-associated and low-molecular-mass species of radionuclides/trace metals to the mussel Mytilus edulis.
    Børretzen P; Salbu B
    J Environ Radioact; 2009 Apr; 100(4):333-41. PubMed ID: 19223097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical analysis of the whole core injection method accuracy for measuring phenanthrene biodegradation rates in undisturbed marine sediments.
    Tang YJ; Krieger-Brockett B
    Chemosphere; 2007 Jun; 68(5):804-13. PubMed ID: 17412394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution characteristics of phenanthrene in the water, suspended particles and sediments from Yangtze River under hydrodynamic conditions.
    Wang L; Shen Z; Wang H; Niu J; Lian G; Yang Z
    J Hazard Mater; 2009 Jun; 165(1-3):441-6. PubMed ID: 19022579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sedimentation rates and trace metal input history in intertidal sediments from San Simón Bay (Ría de Vigo, NW Spain) derived from 210Pb and 137Cs chronology.
    Alvarez-Iglesias P; Quintana B; Rubio B; Pérez-Arlucea M
    J Environ Radioact; 2007; 98(3):229-50. PubMed ID: 17611005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Levels of 137Cs in muddy sediments on the seabed in the Bay of Cadiz (Spain). Part II. Model of vertical migration of (137)Cs.
    Ligero RA; Barrera M; Casas-Ruiz M
    J Environ Radioact; 2005; 80(1):87-103. PubMed ID: 15653189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speciation and reactivity of Cisplatin in river water and seawater.
    Curtis L; Turner A; Vyas N; Sewell G
    Environ Sci Technol; 2010 May; 44(9):3345-50. PubMed ID: 20349990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-cleaning in an estuarine area formerly affected by 226Ra anthropogenic enhancements: numerical simulations.
    Periáñez R; Absi A; Villa M; Moreno HP; Manjón G
    Sci Total Environ; 2005 Mar; 339(1-3):207-18. PubMed ID: 15740770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of tritium in estuarine waters: the role of organic matter.
    Turner A; Millward GE; Stemp M
    J Environ Radioact; 2009 Oct; 100(10):890-5. PubMed ID: 19608308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracing anthropogenic contamination in the Pearl River estuarine and marine environment of South China Sea using sterols and other organic molecular markers.
    Peng X; Zhang G; Mai B; Hu J; Li K; Wang Z
    Mar Pollut Bull; 2005 Aug; 50(8):856-65. PubMed ID: 16115503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new general dynamic model predicting radionuclide concentrations and fluxes in coastal areas from readily accessible driving variables.
    Håkanson L
    J Environ Radioact; 2005; 78(2):217-45. PubMed ID: 15511560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of gravel size fraction on the distribution coefficients of selected radionuclides.
    Um W; Serne RJ; Last GV; Clayton RE; Glossbrenner ET
    J Contam Hydrol; 2009 Jun; 107(1-2):82-90. PubMed ID: 19442406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of sediment properties on the sorption of C12-2-LAS in marine and estuarine sediments.
    Rico-Rico A; Temara A; Behrends T; Hermens JL
    Environ Pollut; 2009 Feb; 157(2):377-83. PubMed ID: 19022541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.