These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 14967515)
1. Trends of radionuclide sorption by estuarine sediments. Experimental studies using 133Ba as a tracer. Barros H; Laissaoui A; Abril JM Sci Total Environ; 2004 Feb; 319(1-3):253-67. PubMed ID: 14967515 [TBL] [Abstract][Full Text] [Related]
2. Experimental and modelling study on the uptake and desorption kinetics of 133Ba by suspended estuarine sediments from southern Spain. Barros H; Abril JM Water Res; 2004 Feb; 38(3):749-55. PubMed ID: 14723945 [TBL] [Abstract][Full Text] [Related]
3. Measuring and modelling temporal trends of 226Ra in waters of a Spanish estuary affected by the phosphate industry. Periáñez R Mar Environ Res; 2005 Jul; 60(1):35-49. PubMed ID: 15649526 [TBL] [Abstract][Full Text] [Related]
4. Transport and distribution of lindane and simazine in a riverine environment: measurements in bed sediments and modelling. Allan IJ; House WA; Parker A; Carter JE Pest Manag Sci; 2004 May; 60(5):417-33. PubMed ID: 15154508 [TBL] [Abstract][Full Text] [Related]
5. A modelling study on 137Cs and 239,240Pu behaviour in the Alborán Sea, western Mediterranean. Periáñez R J Environ Radioact; 2008 Apr; 99(4):694-715. PubMed ID: 18031877 [TBL] [Abstract][Full Text] [Related]
6. Partitioning of radiostrontium in marine aqueous suspensions: laboratory experiments and modeling studies. Benkdad A; Laissaoui A; El Bari H; Benmansour M; Ibnmajah M J Environ Radioact; 2008 Apr; 99(4):748-56. PubMed ID: 18061319 [TBL] [Abstract][Full Text] [Related]
7. The importance of recording physical and chemical variables simultaneously with remote radiological surveillance of aquatic systems: a perspective for environmental modelling. Abril JM; El-Mrabet R; Barros H J Environ Radioact; 2004; 72(1-2):145-52. PubMed ID: 15162866 [TBL] [Abstract][Full Text] [Related]
8. Testing the behaviour of different kinetic models for uptake/release of radionuclides between water and sediments when implemented in a marine dispersion model. Periáñez R J Environ Radioact; 2004; 71(3):243-59. PubMed ID: 14613710 [TBL] [Abstract][Full Text] [Related]
9. Bioavailability of sediment-associated and low-molecular-mass species of radionuclides/trace metals to the mussel Mytilus edulis. Børretzen P; Salbu B J Environ Radioact; 2009 Apr; 100(4):333-41. PubMed ID: 19223097 [TBL] [Abstract][Full Text] [Related]
10. Mathematical analysis of the whole core injection method accuracy for measuring phenanthrene biodegradation rates in undisturbed marine sediments. Tang YJ; Krieger-Brockett B Chemosphere; 2007 Jun; 68(5):804-13. PubMed ID: 17412394 [TBL] [Abstract][Full Text] [Related]
11. Distribution characteristics of phenanthrene in the water, suspended particles and sediments from Yangtze River under hydrodynamic conditions. Wang L; Shen Z; Wang H; Niu J; Lian G; Yang Z J Hazard Mater; 2009 Jun; 165(1-3):441-6. PubMed ID: 19022579 [TBL] [Abstract][Full Text] [Related]
12. Sedimentation rates and trace metal input history in intertidal sediments from San Simón Bay (Ría de Vigo, NW Spain) derived from 210Pb and 137Cs chronology. Alvarez-Iglesias P; Quintana B; Rubio B; Pérez-Arlucea M J Environ Radioact; 2007; 98(3):229-50. PubMed ID: 17611005 [TBL] [Abstract][Full Text] [Related]
13. Levels of 137Cs in muddy sediments on the seabed in the Bay of Cadiz (Spain). Part II. Model of vertical migration of (137)Cs. Ligero RA; Barrera M; Casas-Ruiz M J Environ Radioact; 2005; 80(1):87-103. PubMed ID: 15653189 [TBL] [Abstract][Full Text] [Related]
14. Speciation and reactivity of Cisplatin in river water and seawater. Curtis L; Turner A; Vyas N; Sewell G Environ Sci Technol; 2010 May; 44(9):3345-50. PubMed ID: 20349990 [TBL] [Abstract][Full Text] [Related]
15. Self-cleaning in an estuarine area formerly affected by 226Ra anthropogenic enhancements: numerical simulations. Periáñez R; Absi A; Villa M; Moreno HP; Manjón G Sci Total Environ; 2005 Mar; 339(1-3):207-18. PubMed ID: 15740770 [TBL] [Abstract][Full Text] [Related]
16. Distribution of tritium in estuarine waters: the role of organic matter. Turner A; Millward GE; Stemp M J Environ Radioact; 2009 Oct; 100(10):890-5. PubMed ID: 19608308 [TBL] [Abstract][Full Text] [Related]
17. Tracing anthropogenic contamination in the Pearl River estuarine and marine environment of South China Sea using sterols and other organic molecular markers. Peng X; Zhang G; Mai B; Hu J; Li K; Wang Z Mar Pollut Bull; 2005 Aug; 50(8):856-65. PubMed ID: 16115503 [TBL] [Abstract][Full Text] [Related]
18. A new general dynamic model predicting radionuclide concentrations and fluxes in coastal areas from readily accessible driving variables. Håkanson L J Environ Radioact; 2005; 78(2):217-45. PubMed ID: 15511560 [TBL] [Abstract][Full Text] [Related]
19. The effect of gravel size fraction on the distribution coefficients of selected radionuclides. Um W; Serne RJ; Last GV; Clayton RE; Glossbrenner ET J Contam Hydrol; 2009 Jun; 107(1-2):82-90. PubMed ID: 19442406 [TBL] [Abstract][Full Text] [Related]
20. Effect of sediment properties on the sorption of C12-2-LAS in marine and estuarine sediments. Rico-Rico A; Temara A; Behrends T; Hermens JL Environ Pollut; 2009 Feb; 157(2):377-83. PubMed ID: 19022541 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]