These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 14967534)
1. PDLLA/Bioglass composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment. Verrier S; Blaker JJ; Maquet V; Hench LL; Boccaccini AR Biomaterials; 2004 Jul; 25(15):3013-21. PubMed ID: 14967534 [TBL] [Abstract][Full Text] [Related]
2. In vitro evaluation of novel bioactive composites based on Bioglass-filled polylactide foams for bone tissue engineering scaffolds. Blaker JJ; Gough JE; Maquet V; Notingher I; Boccaccini AR J Biomed Mater Res A; 2003 Dec; 67(4):1401-11. PubMed ID: 14624528 [TBL] [Abstract][Full Text] [Related]
3. Porous poly(alpha-hydroxyacid)/Bioglass composite scaffolds for bone tissue engineering. I: Preparation and in vitro characterisation. Maquet V; Boccaccini AR; Pravata L; Notingher I; Jérôme R Biomaterials; 2004 Aug; 25(18):4185-94. PubMed ID: 15046908 [TBL] [Abstract][Full Text] [Related]
4. Cell viability, proliferation and extracellular matrix production of human annulus fibrosus cells cultured within PDLLA/Bioglass composite foam scaffolds in vitro. Helen W; Gough JE Acta Biomater; 2008 Mar; 4(2):230-43. PubMed ID: 18023627 [TBL] [Abstract][Full Text] [Related]
5. Bone tissue engineering by using a combination of polymer/Bioglass composites with human adipose-derived stem cells. Lu W; Ji K; Kirkham J; Yan Y; Boccaccini AR; Kellett M; Jin Y; Yang XB Cell Tissue Res; 2014 Apr; 356(1):97-107. PubMed ID: 24408074 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional culture of annulus fibrosus cells within PDLLA/Bioglass composite foam scaffolds: assessment of cell attachment, proliferation and extracellular matrix production. Helen W; Merry CL; Blaker JJ; Gough JE Biomaterials; 2007 Apr; 28(11):2010-20. PubMed ID: 17250887 [TBL] [Abstract][Full Text] [Related]
7. Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds. Day RM; Boccaccini AR; Shurey S; Roether JA; Forbes A; Hench LL; Gabe SM Biomaterials; 2004 Dec; 25(27):5857-66. PubMed ID: 15172498 [TBL] [Abstract][Full Text] [Related]
8. Crystallization processes at the surface of polylactic acid-bioactive glass composites during immersion in simulated body fluid. Ginsac N; Chenal JM; Meille S; Pacard E; Zenati R; Hartmann DJ; Chevalier J J Biomed Mater Res B Appl Biomater; 2011 Nov; 99(2):412-9. PubMed ID: 21948519 [TBL] [Abstract][Full Text] [Related]
9. Mechanical properties of highly porous PDLLA/Bioglass composite foams as scaffolds for bone tissue engineering. Blaker JJ; Maquet V; Jérôme R; Boccaccini AR; Nazhat SN Acta Biomater; 2005 Nov; 1(6):643-52. PubMed ID: 16701845 [TBL] [Abstract][Full Text] [Related]
10. Premature degradation of poly(alpha-hydroxyesters) during thermal processing of Bioglass-containing composites. Blaker JJ; Bismarck A; Boccaccini AR; Young AM; Nazhat SN Acta Biomater; 2010 Mar; 6(3):756-62. PubMed ID: 19683603 [TBL] [Abstract][Full Text] [Related]
11. Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass for tissue engineering applications. Roether JA; Boccaccini AR; Hench LL; Maquet V; Gautier S; Jérĵme R Biomaterials; 2002 Sep; 23(18):3871-8. PubMed ID: 12164192 [TBL] [Abstract][Full Text] [Related]
12. In vitro and in vivo analysis of macroporous biodegradable poly(D,L-lactide-co-glycolide) scaffolds containing bioactive glass. Day RM; Maquet V; Boccaccini AR; Jérôme R; Forbes A J Biomed Mater Res A; 2005 Dec; 75(4):778-87. PubMed ID: 16082717 [TBL] [Abstract][Full Text] [Related]
13. Poly(D,L-lactic acid) coated 45S5 Bioglass-based scaffolds: processing and characterization. Chen QZ; Boccaccini AR J Biomed Mater Res A; 2006 Jun; 77(3):445-57. PubMed ID: 16444684 [TBL] [Abstract][Full Text] [Related]
14. Bioglass® 45S5-based composites for bone tissue engineering and functional applications. Rizwan M; Hamdi M; Basirun WJ J Biomed Mater Res A; 2017 Nov; 105(11):3197-3223. PubMed ID: 28686004 [TBL] [Abstract][Full Text] [Related]
15. Fabrication and characterization of sol-gel derived 45S5 Bioglass®-ceramic scaffolds. Chen QZ; Thouas GA Acta Biomater; 2011 Oct; 7(10):3616-26. PubMed ID: 21689791 [TBL] [Abstract][Full Text] [Related]
16. In vitro studies of annulus fibrosus disc cell attachment, differentiation and matrix production on PDLLA/45S5 Bioglass composite films. Wilda H; Gough JE Biomaterials; 2006 Oct; 27(30):5220-9. PubMed ID: 16814857 [TBL] [Abstract][Full Text] [Related]
17. In vitro biocompatibility of 45S5 Bioglass-derived glass-ceramic scaffolds coated with poly(3-hydroxybutyrate). Bretcanu O; Misra S; Roy I; Renghini C; Fiori F; Boccaccini AR; Salih V J Tissue Eng Regen Med; 2009 Feb; 3(2):139-48. PubMed ID: 19170250 [TBL] [Abstract][Full Text] [Related]
18. Improvement of mechanical and biological properties of porous CaSiO3 scaffolds by poly(D,L-lactic acid) modification. Wu C; Ramaswamy Y; Boughton P; Zreiqat H Acta Biomater; 2008 Mar; 4(2):343-53. PubMed ID: 17921076 [TBL] [Abstract][Full Text] [Related]
19. Osteogenic differentiation of umbilical cord and adipose derived stem cells onto highly porous 45S5 Bioglass®-based scaffolds. Detsch R; Alles S; Hum J; Westenberger P; Sieker F; Heusinger D; Kasper C; Boccaccini AR J Biomed Mater Res A; 2015 Mar; 103(3):1029-37. PubMed ID: 24853477 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Lu HH; El-Amin SF; Scott KD; Laurencin CT J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]