BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 14967535)

  • 1. The effect of hydrogel charge density on cell attachment.
    Schneider GB; English A; Abraham M; Zaharias R; Stanford C; Keller J
    Biomaterials; 2004 Jul; 25(15):3023-8. PubMed ID: 14967535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of positively charged poly(ethylene glycol)-diacrylate hydrogel as a bone tissue engineering scaffold.
    Tan F; Xu X; Deng T; Yin M; Zhang X; Wang J
    Biomed Mater; 2012 Oct; 7(5):055009. PubMed ID: 22945346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering.
    Burdick JA; Anseth KS
    Biomaterials; 2002 Nov; 23(22):4315-23. PubMed ID: 12219821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chitosan supports the initial attachment and spreading of osteoblasts preferentially over fibroblasts.
    Fakhry A; Schneider GB; Zaharias R; Senel S
    Biomaterials; 2004 May; 25(11):2075-9. PubMed ID: 14741622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attachment and spreading of fibroblasts on an RGD peptide-modified injectable hyaluronan hydrogel.
    Shu XZ; Ghosh K; Liu Y; Palumbo FS; Luo Y; Clark RA; Prestwich GD
    J Biomed Mater Res A; 2004 Feb; 68(2):365-75. PubMed ID: 14704979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotinylated biodegradable nanotemplated hydrogel networks for cell interactive applications.
    Clapper JD; Pearce ME; Guymon CA; Salem AK
    Biomacromolecules; 2008 Apr; 9(4):1188-94. PubMed ID: 18307307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function.
    Subramani K; Birch MA
    Biomed Mater; 2006 Sep; 1(3):144-54. PubMed ID: 18458396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms underlying the attachment and spreading of human osteoblasts: from transient interactions to focal adhesions on vitronectin-grafted bioactive surfaces.
    Brun P; Scorzeto M; Vassanelli S; Castagliuolo I; Palù G; Ghezzo F; Messina GM; Iucci G; Battaglia V; Sivolella S; Bagno A; Polzonetti G; Marletta G; Dettin M
    Acta Biomater; 2013 Apr; 9(4):6105-15. PubMed ID: 23261922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adhesion and migration of marrow-derived osteoblasts on injectable in situ crosslinkable poly(propylene fumarate-co-ethylene glycol)-based hydrogels with a covalently linked RGDS peptide.
    Behravesh E; Zygourakis K; Mikos AG
    J Biomed Mater Res A; 2003 May; 65(2):260-70. PubMed ID: 12734821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination of integrin-binding peptide and growth factor promotes cell adhesion on electron-beam-fabricated patterns.
    Kolodziej CM; Kim SH; Broyer RM; Saxer SS; Decker CG; Maynard HD
    J Am Chem Soc; 2012 Jan; 134(1):247-55. PubMed ID: 22126191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-interactive alginate hydrogels for bone tissue engineering.
    Alsberg E; Anderson KW; Albeiruti A; Franceschi RT; Mooney DJ
    J Dent Res; 2001 Nov; 80(11):2025-9. PubMed ID: 11759015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of hybrid materials based on hydroxyethylmethacrylate as supports for improving cell adhesion and proliferation.
    Schiraldi C; D'Agostino A; Oliva A; Flamma F; De Rosa A; Apicella A; Aversa R; De Rosa M
    Biomaterials; 2004 Aug; 25(17):3645-53. PubMed ID: 15020139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptide-grafted poly(ethylene glycol) hydrogels support dynamic adhesion of endothelial progenitor cells.
    Seeto WJ; Tian Y; Lipke EA
    Acta Biomater; 2013 Sep; 9(9):8279-89. PubMed ID: 23770139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge density is more important than charge polarity in enhancing osteoblast-like cell attachment on poly(ethylene glycol)-diacrylate hydrogel.
    Tan F; Liu J; Liu M; Wang J
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():330-339. PubMed ID: 28482535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous polymer scaffolds surface-modified with arginine-glycine-aspartic acid enhance bone cell attachment and differentiation in vitro.
    Hu Y; Winn SR; Krajbich I; Hollinger JO
    J Biomed Mater Res A; 2003 Mar; 64(3):583-90. PubMed ID: 12579573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mediating specific cell adhesion to low-adhesive diblock copolymers by instant modification with cyclic RGD peptides.
    Lieb E; Hacker M; Tessmar J; Kunz-Schughart LA; Fiedler J; Dahmen C; Hersel U; Kessler H; Schulz MB; Göpferich A
    Biomaterials; 2005 May; 26(15):2333-41. PubMed ID: 15585236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-functionalized star PEG-coated PVDF surfaces for cytocompatibility-improved implant components.
    Heuts J; Salber J; Goldyn AM; Janser R; Möller M; Klee D
    J Biomed Mater Res A; 2010 Mar; 92(4):1538-51. PubMed ID: 19431207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between chitosan and cells measured by AFM.
    Hsiao SW; Thien DV; Ho MH; Hsieh HJ; Li CH; Hung CH; Li HH
    Biomed Mater; 2010 Oct; 5(5):054117. PubMed ID: 20876961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attachment and proliferation of osteoblasts and fibroblasts on biomaterials for orthopaedic use.
    Hunter A; Archer CW; Walker PS; Blunn GW
    Biomaterials; 1995 Mar; 16(4):287-95. PubMed ID: 7772668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PEG attachment to osteoblasts enhances mechanosensitivity.
    Hamamura K; Weng Y; Zhao J; Yokota H; Xie D
    Biomed Mater; 2008 Jun; 3(2):025017. PubMed ID: 18523342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.