BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 14967535)

  • 21. RGD-containing peptide GCRGYGRGDSPG reduces enhancement of osteoblast differentiation by poly(L-lysine)-graft-poly(ethylene glycol)-coated titanium surfaces.
    Tosatti S; Schwartz Z; Campbell C; Cochran DL; VandeVondele S; Hubbell JA; Denzer A; Simpson J; Wieland M; Lohmann CH; Textor M; Boyan BD
    J Biomed Mater Res A; 2004 Mar; 68(3):458-72. PubMed ID: 14762925
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels.
    Blakney AK; Swartzlander MD; Bryant SJ
    J Biomed Mater Res A; 2012 Jun; 100(6):1375-86. PubMed ID: 22407522
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancement of the adhesion of fibroblasts by peptide containing an Arg-Gly-Asp sequence with poly(ethylene glycol) into a thermo-reversible hydrogel as a synthetic extracellular matrix.
    Park KH; Na K; Chung HM
    Biotechnol Lett; 2005 Feb; 27(4):227-31. PubMed ID: 15742141
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrostatic interactions as a predictor for osteoblast attachment to biomaterials.
    Smith IO; Baumann MJ; McCabe LR
    J Biomed Mater Res A; 2004 Sep; 70(3):436-41. PubMed ID: 15293317
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RGD-grafted poly-L-lysine-graft-(polyethylene glycol) copolymers block non-specific protein adsorption while promoting cell adhesion.
    VandeVondele S; Vörös J; Hubbell JA
    Biotechnol Bioeng; 2003 Jun; 82(7):784-90. PubMed ID: 12701144
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improved cell adhesion and proliferation on synthetic phosphonic acid-containing hydrogels.
    Tan J; Gemeinhart RA; Ma M; Saltzman WM
    Biomaterials; 2005 Jun; 26(17):3663-71. PubMed ID: 15621257
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis, characterization, and in vitro evaluation of a hydrogel-based corneal onlay.
    Oelker AM; Grinstaff MW
    IEEE Trans Nanobioscience; 2012 Mar; 11(1):37-45. PubMed ID: 21908258
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of ligand type and density on osteoblast adhesion, proliferation, and matrix mineralization.
    Harbers GM; Healy KE
    J Biomed Mater Res A; 2005 Dec; 75(4):855-69. PubMed ID: 16121356
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Issues of ligand accessibility and mobility in initial cell attachment.
    Thid D; Bally M; Holm K; Chessari S; Tosatti S; Textor M; Gold J
    Langmuir; 2007 Nov; 23(23):11693-704. PubMed ID: 17918863
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Model surfaces engineered with nanoscale roughness and RGD tripeptides promote osteoblast activity.
    El-Ghannam AR; Ducheyne P; Risbud M; Adams CS; Shapiro IM; Castner D; Golledge S; Composto RJ
    J Biomed Mater Res A; 2004 Mar; 68(4):615-27. PubMed ID: 14986317
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of independently variable grafting density and layer thickness of polymer nanolayers on peptide adsorption and cell adhesion.
    Singh N; Cui X; Boland T; Husson SM
    Biomaterials; 2007 Feb; 28(5):763-71. PubMed ID: 17049595
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrin subunits responsible for adhesion of human osteoblast-like cells to biomimetic peptide surfaces.
    Rezania A; Healy KE
    J Orthop Res; 1999 Jul; 17(4):615-23. PubMed ID: 10459771
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel poly(HEMA-co-METAC)/alginate semi-interpenetrating hydrogels for biomedical applications: synthesis and characterization.
    La Gatta A; Schiraldi C; Esposito A; D'Agostino A; De Rosa A
    J Biomed Mater Res A; 2009 Jul; 90(1):292-302. PubMed ID: 18508339
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of RGD density on osteoblast and endothelial cell behavior on RGD-grafted polyethylene terephthalate surfaces.
    Chollet C; Chanseau C; Remy M; Guignandon A; Bareille R; Labrugère C; Bordenave L; Durrieu MC
    Biomaterials; 2009 Feb; 30(5):711-20. PubMed ID: 19010529
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RGD-grafted thermoreversible polymers to facilitate attachment of BMP-2 responsive C2C12 cells.
    Smith E; Yang J; McGann L; Sebald W; Uludag H
    Biomaterials; 2005 Dec; 26(35):7329-38. PubMed ID: 16019067
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mammalian cell growth on collagen-hydrogels.
    Toselli P; Mogayzel PJ; Faris B; Ferrera R; Franzblau C
    Scan Electron Microsc; 1984; (Pt 3):1301-12. PubMed ID: 6505615
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanics and electrostatics of the interactions between osteoblasts and titanium surface.
    Kabaso D; Gongadze E; Perutková S; Matschegewski C; Kralj-Iglic V; Beck U; van Rienen U; Iglic A
    Comput Methods Biomech Biomed Engin; 2011 May; 14(5):469-82. PubMed ID: 21516531
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of pore size on cell adhesion in collagen-GAG scaffolds.
    O'Brien FJ; Harley BA; Yannas IV; Gibson LJ
    Biomaterials; 2005 Feb; 26(4):433-41. PubMed ID: 15275817
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrin interactions with immobilized peptides in polyethylene glycol diacrylate hydrogels.
    Gonzalez AL; Gobin AS; West JL; McIntire LV; Smith CW
    Tissue Eng; 2004; 10(11-12):1775-86. PubMed ID: 15684686
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The synergy peptide PHSRN and the adhesion peptide RGD mediate cell adhesion through a common mechanism.
    Feng Y; Mrksich M
    Biochemistry; 2004 Dec; 43(50):15811-21. PubMed ID: 15595836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.