These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 14967640)

  • 1. Interactive effects of elevated CO(2) and mineral nutrition on growth and CO(2) exchange of sweet chestnut seedlings (Castanea sativa).
    El Kohen A; Mousseau M
    Tree Physiol; 1994; 14(7_9):679-690. PubMed ID: 14967640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon assimilation and nitrogen in needles of fertilized and unfertilized field-grown Scots pine at natural and elevated concentrations of CO2.
    Laitinen K; Luomala EM; Kellomäki S; Vapaavuori E
    Tree Physiol; 2000 Jul; 20(13):881-92. PubMed ID: 11303578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosa in a long-term field experiment.
    Temperton VM; Grayston SJ; Jackson G; Barton CV; Millard P; Jarvis PG
    Tree Physiol; 2003 Oct; 23(15):1051-9. PubMed ID: 12975129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Root restriction as a factor in photosynthetic acclimation of cotton seedlings grown in elevated carbon dioxide.
    Thomas RB; Strain BR
    Plant Physiol; 1991 Jun; 96(2):627-34. PubMed ID: 16668232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth and photosynthesis of loblolly pine (Pinus taeda) after exposure to elevated CO(2) for 19 months in the field.
    Tissue DT; Thomas RB; Strain BR
    Tree Physiol; 1996; 16(1_2):49-59. PubMed ID: 14871747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of elevated [CO(2)] and varying nutrient application rates on physiology and biomass accumulation of Sitka spruce (Picea sitchensis).
    Murray MB; Smith RI; Friend A; Jarvis PG
    Tree Physiol; 2000 Apr; 20(7):421-434. PubMed ID: 12651438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The seasonal pattern of CO
    Ruetz WF
    Oecologia; 1973 Sep; 13(3):247-269. PubMed ID: 28308581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of season, needle age and elevated atmospheric CO(2) on photosynthesis in Scots pine (Pinus sylvestris).
    Jach ME; Ceulemans R
    Tree Physiol; 2000 Feb; 20(3):145-157. PubMed ID: 12651467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosynthetic traits around budbreak in pre-existing needles of Sakhalin spruce (Picea glehnii) seedlings grown under elevated CO2 concentration assessed by chlorophyll fluorescence measurements.
    Kitao M; Tobita H; Utsugi H; Komatsu M; Kitaoka S; Maruyama Y; Koike T
    Tree Physiol; 2012 Aug; 32(8):998-1007. PubMed ID: 22705862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of elevated CO(2) on growth and chloroplast proteins in Prunus avium.
    Wilkins D; Van Oosten JJ; Besford RT
    Tree Physiol; 1994; 14(7_9):769-779. PubMed ID: 14967647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Foraging for nutrients, responses to changes in light, and competition in tropical deciduous tree seedlings.
    Huante P; Rincón E; Chapin Iii FS
    Oecologia; 1998 Nov; 117(1-2):209-216. PubMed ID: 28308489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atmospheric CO(2) and mycorrhiza effects on biomass allocation and nutrient uptake of nodulated pea (Pisum sativum L.) plants.
    Gavito ME; Curtis PS; Mikkelsen TN; Jakobsen I
    J Exp Bot; 2000 Nov; 51(352):1931-8. PubMed ID: 11113171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of elevated CO(2) concentration and nutrition on net photosynthesis, stomatal conductance and needle respiration of field-grown Norway spruce trees.
    Roberntz P; Stockfors J
    Tree Physiol; 1998 Apr; 18(4):233-241. PubMed ID: 12651377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Higher growth temperatures decreased net carbon assimilation and biomass accumulation of northern red oak seedlings near the southern limit of the species range.
    Wertin TM; McGuire MA; Teskey RO
    Tree Physiol; 2011 Dec; 31(12):1277-88. PubMed ID: 21937670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term photosynthetic acclimation to increased atmospheric CO(2) concentration in young birch (Betula pendula) trees.
    Rey A; Jarvis PG
    Tree Physiol; 1998 Jul; 18(7):441-450. PubMed ID: 12651355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactive effects of elevated CO2 concentration and nitrogen supply on partitioning of newly fixed 13C and 15N between shoot and roots of pedunculate oak seedlings (Quercus robur).
    Maillard P; Guehl JM; Muller JF; Gross P
    Tree Physiol; 2001 Feb; 21(2-3):163-72. PubMed ID: 11303647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of carbon dioxide concentration and nutrition on photosynthetic functions of white birch seedlings.
    Zhang S; Dang QL
    Tree Physiol; 2006 Nov; 26(11):1457-67. PubMed ID: 16877330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lack of downregulation of photosynthesis in a tropical root crop, cassava, grown under an elevated CO2 concentration.
    Fernández MD; Tezara W; Rengifo E; Herrera A
    Funct Plant Biol; 2002 Jul; 29(7):805-814. PubMed ID: 32689528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seedlings of five boreal tree species differ in acclimation of net photosynthesis to elevated CO(2) and temperature.
    Tjoelker MG; Oleksyn J; Reich PB
    Tree Physiol; 1998 Nov; 18(11):715-726. PubMed ID: 12651406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of elevated CO(2) on chloroplast components, gas exchange and growth of oak and cherry.
    Atkinson CJ; Taylor JM; Wilkins D; Besford RT
    Tree Physiol; 1997 May; 17(5):319-25. PubMed ID: 14759855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.