These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 14967641)

  • 1. Effects of elevated CO(2), nutrition and climatic warming on bud phenology in Sitka spruce (Picea sitchensis) and their impact on the risk of frost damage.
    Murray MB; Smith RI; Leith ID; Fowler D; Lee HS; Friend AD; Jarvis PG
    Tree Physiol; 1994; 14(7_9):691-706. PubMed ID: 14967641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term effects of elevated carbon dioxide concentration and provenance on four clones of Sitka spruce (Picea sitchensis). I. Plant growth, allocation and ontogeny.
    Centritto M; Lee HS; Jarvis PG
    Tree Physiol; 1999 Oct; 19(12):799-806. PubMed ID: 10562396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dormancy release of Norway spruce under climatic warming: testing ecophysiological models of bud burst with a whole-tree chamber experiment.
    Hänninen H; Slaney M; Linder S
    Tree Physiol; 2007 Feb; 27(2):291-300. PubMed ID: 17241971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of elevated [CO(2)] and varying nutrient application rates on physiology and biomass accumulation of Sitka spruce (Picea sitchensis).
    Murray MB; Smith RI; Friend A; Jarvis PG
    Tree Physiol; 2000 Apr; 20(7):421-434. PubMed ID: 12651438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climatic control of bud burst in young seedlings of nine provenances of Norway spruce.
    Søgaard G; Johnsen O; Nilsen J; Junttila O
    Tree Physiol; 2008 Feb; 28(2):311-20. PubMed ID: 18055441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of elevated CO(2) and temperature on cold hardiness and spring bud burst and growth in Douglas-fir (Pseudotsuga menziesii).
    Guak S; Olsyzk DM; Fuchigami LH; Tingey DT
    Tree Physiol; 1998 Oct; 18(10):671-679. PubMed ID: 12651417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term effects of elevated carbon dioxide concentration and provenance on four clones of Sitka spruce (Picea sitchensis). II. Photosynthetic capacity and nitrogen use efficiency.
    Centritto M; Jarvis PG
    Tree Physiol; 1999 Oct; 19(12):807-814. PubMed ID: 10562397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of bud-break phenology to daily-asymmetric warming: daytime warming intensifies the advancement of bud break.
    Zhang S; Isabel N; Huang JG; Ren H; Rossi S
    Int J Biometeorol; 2019 Dec; 63(12):1631-1640. PubMed ID: 31385094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bud burst timing in Picea abies seedlings as affected by temperature during dormancy induction and mild spells during chilling.
    Granhus A; Fløistad IS; Søgaard G
    Tree Physiol; 2009 Apr; 29(4):497-503. PubMed ID: 19203964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probability of Spring Frosts, Not Growing Degree-Days, Drives Onset of Spruce Bud Burst in Plantations at the Boreal-Temperate Forest Ecotone.
    Marquis B; Bergeron Y; Simard M; Tremblay F
    Front Plant Sci; 2020; 11():1031. PubMed ID: 32849673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of acid mist on mature grafts of Sitka spruce. Part I. Frost hardiness and foliar nutrient concentrations.
    Sheppard LJ; Leith ID; Cape JN
    Environ Pollut; 1994; 85(2):229-38. PubMed ID: 15091679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of elevated carbon dioxide and drought on the growth and physiology of clonal Sitka spruce plants (Picea sitchensis (Bong.) Carr.).
    Townend J
    Tree Physiol; 1993 Dec; 13(4):389-99. PubMed ID: 14969994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growing-season frost is a better predictor of tree growth than mean annual temperature in boreal mixedwood forest plantations.
    Marquis B; Bergeron Y; Simard M; Tremblay F
    Glob Chang Biol; 2020 Nov; 26(11):6537-6554. PubMed ID: 32865303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Warming Events Advance or Delay Spring Phenology by Affecting Bud Dormancy Depth in Trees.
    Malyshev AV
    Front Plant Sci; 2020; 11():856. PubMed ID: 32655599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High autumn temperature delays spring bud burst in boreal trees, counterbalancing the effect of climatic warming.
    Heide OM
    Tree Physiol; 2003 Sep; 23(13):931-6. PubMed ID: 14532017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicted changes in the synchrony of larval emergence and budburst under climatic warming.
    Dewar RC; Watt AD
    Oecologia; 1992 Apr; 89(4):557-559. PubMed ID: 28311887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dormancy release and chilling requirement of buds of latitudinal ecotypes of Betula pendula and B. pubescens.
    Myking T; Heide OM
    Tree Physiol; 1995 Nov; 15(11):697-704. PubMed ID: 14965987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of photoperiod and temperature on the timing of bud burst in Norway spruce (Picea abies).
    Partanen J; Koski V; Hänninen H
    Tree Physiol; 1998 Dec; 18(12):811-816. PubMed ID: 12651402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local adaptation at the range peripheries of Sitka spruce.
    Mimura M; Aitken SN
    J Evol Biol; 2010 Feb; 23(2):249-58. PubMed ID: 20021549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Root and shoot growth, assimilate partitioning and cell proliferation in roots of Sitka spruce (Picea sitchensis) grown in filtered and unfiltered chambers.
    Bambridge L; Harmer R; Macleod R
    Environ Pollut; 1996; 92(3):343-7. PubMed ID: 15091387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.