BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 14968429)

  • 1. Large-scale screening of yeast mutants for sensitivity to the IMP dehydrogenase inhibitor 6-azauracil.
    Riles L; Shaw RJ; Johnston M; Reines D
    Yeast; 2004 Feb; 21(3):241-8. PubMed ID: 14968429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Saccharomyces cerevisiae transcription elongation mutants are defective in PUR5 induction in response to nucleotide depletion.
    Shaw RJ; Reines D
    Mol Cell Biol; 2000 Oct; 20(20):7427-37. PubMed ID: 11003640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissection of the molecular basis of mycophenolate resistance in Saccharomyces cerevisiae.
    Jenks MH; Reines D
    Yeast; 2005 Nov; 22(15):1181-90. PubMed ID: 16278936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of an IMP dehydrogenase gene and its overexpression in drug-sensitive transcription elongation mutants of yeast.
    Shaw RJ; Wilson JL; Smith KT; Reines D
    J Biol Chem; 2001 Aug; 276(35):32905-16. PubMed ID: 11441018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide screen of fission yeast mutants for sensitivity to 6-azauracil, an inhibitor of transcriptional elongation.
    Zhou H; Liu Q; Shi T; Yu Y; Lu H
    Yeast; 2015 Oct; 32(10):643-55. PubMed ID: 26173815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening the yeast "disruptome" for mutants affecting resistance to the immunosuppressive drug, mycophenolic acid.
    Desmoucelles C; Pinson B; Saint-Marc C; Daignan-Fornier B
    J Biol Chem; 2002 Jul; 277(30):27036-44. PubMed ID: 12016207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic interaction between transcription elongation factor TFIIS and RNA polymerase II.
    Archambault J; Lacroute F; Ruet A; Friesen JD
    Mol Cell Biol; 1992 Sep; 12(9):4142-52. PubMed ID: 1508210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of the mycophenolate-inhibited form of IMP dehydrogenase in vivo.
    McPhillips CC; Hyle JW; Reines D
    Proc Natl Acad Sci U S A; 2004 Aug; 101(33):12171-6. PubMed ID: 15292516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional distinctions between IMP dehydrogenase genes in providing mycophenolate resistance and guanine prototrophy to yeast.
    Hyle JW; Shaw RJ; Reines D
    J Biol Chem; 2003 Aug; 278(31):28470-8. PubMed ID: 12746440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations in RNA polymerase II and elongation factor SII severely reduce mRNA levels in Saccharomyces cerevisiae.
    Lennon JC; Wind M; Saunders L; Hock MB; Reines D
    Mol Cell Biol; 1998 Oct; 18(10):5771-9. PubMed ID: 9742094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of RNA yeast polymerase II mutants in studying transcription elongation.
    Reines D
    Methods Enzymol; 2003; 371():284-92. PubMed ID: 14712708
    [No Abstract]   [Full Text] [Related]  

  • 12. Overexpression of SNG1 causes 6-azauracil resistance in Saccharomyces cerevisiae.
    García-López MC; Mirón-García MC; Garrido-Godino AI; Mingorance C; Navarro F
    Curr Genet; 2010 Jun; 56(3):251-63. PubMed ID: 20424846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation.
    Kizer KO; Phatnani HP; Shibata Y; Hall H; Greenleaf AL; Strahl BD
    Mol Cell Biol; 2005 Apr; 25(8):3305-16. PubMed ID: 15798214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-activity relationships for inhibition of inosine monophosphate dehydrogenase and differentiation induction of K562 cells among the mycophenolic acid derivatives.
    Mitsuhashi S; Takenaka J; Iwamori K; Nakajima N; Ubukata M
    Bioorg Med Chem; 2010 Nov; 18(22):8106-11. PubMed ID: 20934342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations in the second largest subunit of RNA polymerase II cause 6-azauracil sensitivity in yeast and increased transcriptional arrest in vitro.
    Powell W; Reines D
    J Biol Chem; 1996 Mar; 271(12):6866-73. PubMed ID: 8636112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. mRNA capping enzyme activity is coupled to an early transcription elongation.
    Kim HJ; Jeong SH; Heo JH; Jeong SJ; Kim ST; Youn HD; Han JW; Lee HW; Cho EJ
    Mol Cell Biol; 2004 Jul; 24(14):6184-93. PubMed ID: 15226422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of gene induction and arrest site transcription in yeast with mutations in the transcription elongation machinery.
    Wind-Rotolo M; Reines D
    J Biol Chem; 2001 Apr; 276(15):11531-8. PubMed ID: 11278887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo.
    Mason PB; Struhl K
    Mol Cell; 2005 Mar; 17(6):831-40. PubMed ID: 15780939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic evidence supports a role for the yeast CCR4-NOT complex in transcriptional elongation.
    Denis CL; Chiang YC; Cui Y; Chen J
    Genetics; 2001 Jun; 158(2):627-34. PubMed ID: 11404327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of mycophenolic acid on inosine monophosphate dehydrogenase I and II mRNA expression in white blood cells and various tissues in sheep.
    Dzidic A; Prgomet C; Mohr A; Meyer K; Bauer J; Meyer HH; Pfaffl MW
    J Vet Med A Physiol Pathol Clin Med; 2006 May; 53(4):163-9. PubMed ID: 16629948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.