These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 14968880)

  • 1. Retention of arsenic and selenium compounds using limestone in a coal gasification flue gas.
    Diaz-Somoano M; Martinez-Tarazona MR
    Environ Sci Technol; 2004 Feb; 38(3):899-903. PubMed ID: 14968880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The stability of arsenic and selenium compounds that were retained in limestone in a coal gasification atmosphere.
    Díaz-Somoano M; López-Antón MA; Huggins FE; Martínez-Tarazona MR
    J Hazard Mater; 2010 Jan; 173(1-3):450-4. PubMed ID: 19762148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic and selenium capture by fly ashes at low temperature.
    López-Antón MA; Díaz-Somoano M; Spears DA; Martínez-Tarazona MR
    Environ Sci Technol; 2006 Jun; 40(12):3947-51. PubMed ID: 16830566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Migration and emission behavior of arsenic and selenium in a circulating fluidized bed power plant burning arsenic/selenium-enriched coal.
    Huang Y; Gong H; Hu H; Fu B; Yuan B; Li S; Luo G; Yao H
    Chemosphere; 2021 Jan; 263():127920. PubMed ID: 32822936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capture of gas-phase arsenic oxide by lime: kinetic and mechanistic studies.
    Jadhav RA; Fan LS
    Environ Sci Technol; 2001 Feb; 35(4):794-9. PubMed ID: 11349294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal measurements and kinetics of selenium release during coal combustion and gasification in a fluidized bed.
    Shen F; Liu J; Zhang Z; Yang Y
    J Hazard Mater; 2016 Jun; 310():40-7. PubMed ID: 26897573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fate of selenium in coal combustion: volatilization and speciation in the flue gas.
    Yan R; Gauthier D; Flamant G; Peraudeau G; Lu J; Zheng C
    Environ Sci Technol; 2001 Apr; 35(7):1406-10. PubMed ID: 11348075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-Line Analysis and Kinetic Behavior of Arsenic Release during Coal Combustion and Pyrolysis.
    Shen F; Liu J; Zhang Z; Dai J
    Environ Sci Technol; 2015 Nov; 49(22):13716-23. PubMed ID: 26488499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. As, Hg, and Se flue gas sampling in a coal-fired power plant and their fate during coal combustion.
    Otero-Rey JR; López-Vilariño JM; Moreda-Piñeiro J; Alonso-Rodríguez E; Muniategui-Lorenzo S; López-Mahía P; Prada-Rodríguez D
    Environ Sci Technol; 2003 Nov; 37(22):5262-7. PubMed ID: 14655716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combustion properties and desulfurization of high sulfur containing Indian and Nepali coals using lime-based products.
    Singh RM; Kamide M; Li T; Kim H
    Environ Sci Technol; 2005 Jun; 39(11):4265-9. PubMed ID: 15984809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing sorbents for mercury control in coal-combustion flue gas.
    Sjostrom S; Ebner T; Ley T; Slye R; Richardson C; Machalek T; Richardson M; Chang R
    J Air Waste Manag Assoc; 2002 Aug; 52(8):902-11. PubMed ID: 12184688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regenerable sorbents for mercury capture in simulated coal combustion flue gas.
    Rodríguez-Pérez J; López-Antón MA; Díaz-Somoano M; García R; Martínez-Tarazona MR
    J Hazard Mater; 2013 Sep; 260():869-77. PubMed ID: 23876255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A theoretical study of properties and reactions involving arsenic and selenium compounds present in coal combustion flue gases.
    Urban DR; Wilcox J
    J Phys Chem A; 2006 May; 110(17):5847-52. PubMed ID: 16640380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Transformation of sulfur forms during coal pyrolysis and partial gasification in a fixed bed reactor].
    Li B; Cao Y; Zhang J; Huang J; Wang Y; Chen F
    Huan Jing Ke Xue; 2003 Mar; 24(2):60-5. PubMed ID: 12800660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of mercury vapor emissions from combustion flue gas.
    Yan R; Liang DT; Tay JH
    Environ Sci Pollut Res Int; 2003; 10(6):399-407. PubMed ID: 14690030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomass gasification chars for mercury capture from a simulated flue gas of coal combustion.
    Fuente-Cuesta A; Diaz-Somoano M; Lopez-Anton MA; Cieplik M; Fierro JL; Martínez-Tarazona MR
    J Environ Manage; 2012 May; 98():23-8. PubMed ID: 22325640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Retention of selenium volatility using lime in coal combustion].
    Zhang J; Ren D; Zhong Q; Xu F; Zhang Y; Yin J
    Huan Jing Ke Xue; 2001 May; 22(3):100-3. PubMed ID: 11507891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-ring PAH removal from waste hot gas by sorbents: influence of the sorbent characteristics.
    Mastral AM; García T; Callén MS; López JM; Navarro MV; Murillo R; Galbán I
    Environ Sci Technol; 2002 Apr; 36(8):1821-6. PubMed ID: 11993882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fate of hazardous air pollutants in oxygen-fired coal combustion with different flue gas recycling.
    Zhuang Y; Pavlish JH
    Environ Sci Technol; 2012 Apr; 46(8):4657-65. PubMed ID: 22439940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon dioxide sorption capacities of coal gasification residues.
    Kempka T; Fernández-Steeger T; Li DY; Schulten M; Schlüter R; Krooss BM
    Environ Sci Technol; 2011 Feb; 45(4):1719-23. PubMed ID: 21210659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.