These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 14969868)

  • 1. Physiology and morphology of Douglas-fir rooted cuttings compared to seedlings and transplants.
    Ritchie GA; Tanaka Y; Duke SD
    Tree Physiol; 1992 Mar; 10(2):179-94. PubMed ID: 14969868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maturation in Douglas-fir: II. Maturation characteristics of genetically matched Douglas-fir seedlings, rooted cuttings and tissue culture plantlets during and after 5 years of field growth.
    Ritchie GA; Duke SD; Timmis R
    Tree Physiol; 1994 Nov; 14(11):1261-75. PubMed ID: 14967616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Root growth and water use efficiency of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and lodgepole pine (Pinus contorta Dougl.) seedlings.
    Smit J; Van Den Driessche R
    Tree Physiol; 1992 Dec; 11(4):401-10. PubMed ID: 14969945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of shade and root confinement on the expression of plagiotropic growth in juvenile-origin Douglas-fir rooted cuttings.
    Ritchie GA; Keeley JW; Ward PA
    Can J For Res; 1997 Jul; 27(7):1142-5. PubMed ID: 11540948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drought tolerance, growth partitioning and vigor in eucalypt seedlings and rooted cuttings.
    Blake TJ; Filho WS
    Tree Physiol; 1988 Dec; 4(4):325-35. PubMed ID: 14972803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absolute and relative growth of Douglas-fir seedlings of different sizes.
    Van Den Driessche R
    Tree Physiol; 1992 Mar; 10(2):141-52. PubMed ID: 14969865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water movement in yellow-cedar seedlings and rooted cuttings: comparison of whole plant and root system pressurization methods.
    Grossnickle SC; Russell JH
    Tree Physiol; 1990 Mar; 6(1):57-68. PubMed ID: 14972960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Survival, early growth and impact of damage by late-spring frost and winter desiccation on Douglas-fir seedlings in southern Sweden.
    Malmqvist C; Wallertz K; Johansson U
    New For (Dordr); 2018; 49(6):723-736. PubMed ID: 30416236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of elevated CO(2) and temperature on cold hardiness and spring bud burst and growth in Douglas-fir (Pseudotsuga menziesii).
    Guak S; Olsyzk DM; Fuchigami LH; Tingey DT
    Tree Physiol; 1998 Oct; 18(10):671-679. PubMed ID: 12651417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth and branching habit of rooted cuttings collected from epicormic shoots of Betula pendula Roth.
    Cameron AD; Sani H
    Tree Physiol; 1994 Apr; 14(4):427-36. PubMed ID: 14967697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomass and nutrient allocation in Douglas-fir and amabilis fir seedlings: influence of growth rate and nutrition.
    Hawkins BJ; Henry G; Kiiskila SB
    Tree Physiol; 1998 Dec; 18(12):803-810. PubMed ID: 12651401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive significance of intermittent shoot growth in Douglas-fir seedlings.
    Kaya Z; Adams WT; Campbell RK
    Tree Physiol; 1994 Nov; 14(11):1277-89. PubMed ID: 14967617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of artificial and western spruce budworm (Lepidoptera: Tortricidae) defoliation on growth and biomass allocation of Douglas-fir seedlings.
    Chen Z; Kolb TE; Clancy KM
    J Econ Entomol; 2002 Jun; 95(3):587-94. PubMed ID: 12076004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationships among cold hardiness, root growth potential and bud dormancy in three conifers.
    Burr KE; Tinus RW; Wallner SJ; King RM
    Tree Physiol; 1989 Sep; 5(3):291-306. PubMed ID: 14972975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Root growth in Sitka spruce and Douglas-fir transplants: dependence on the shoot and stored carbohydrates.
    Philipson JJ
    Tree Physiol; 1988 Jun; 4(2):101-8. PubMed ID: 14972820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Root hydraulic conductivity and xylem sap levels of zeatin riboside and abscisic acid in ectomycorrhizal Douglas fir seedlings.
    Coleman MD; Bledsoe CS; Smit BA
    New Phytol; 1990 Jun; 115(2):275-284. PubMed ID: 33873951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New root growth of Douglas-fir seedlings at low carbon dioxide concentration.
    Van Den Driessche R
    Tree Physiol; 1991 Apr; 8(3):289-95. PubMed ID: 14972879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethanol synthesis and aerobic respiration in the laboratory by leader segments of Douglas-fir seedlings from winter and spring.
    Joseph G; Kelsey RG
    J Exp Bot; 2004 May; 55(399):1095-103. PubMed ID: 15020632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of nutrient supply and water vapour pressure on root architecture of Douglas-fir and western hemlock seedlings.
    Conlin TSS; van den Driessche R
    Funct Plant Biol; 2006 Oct; 33(10):941-948. PubMed ID: 32689304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutrition and bud removal affect biomass and nutrient allocation in Douglas-fir and western red cedar.
    Hawkins BJ; Henry G
    Tree Physiol; 1999 Mar; 19(3):197-203. PubMed ID: 12651583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.