These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 14969872)
1. Carbon exchange rates, chlorophyll content, and carbohydrate status of two forest tree species exposed to carbon dioxide enrichment. Wullschleger SD; Norby RJ; Hendrix DL Tree Physiol; 1992 Jan; 10(1):21-31. PubMed ID: 14969872 [TBL] [Abstract][Full Text] [Related]
2. Soil nitrogen and chronic ozone stress influence physiology, growth and nutrient status of Pinus taeda L. and Liriodendron tulipifera L. seedlings. Tjoelker MG; Luxmoore RJ New Phytol; 1991 Sep; 119(1):69-81. PubMed ID: 33874340 [TBL] [Abstract][Full Text] [Related]
3. Interactive effects of ozone and elevated carbon dioxide on the growth and physiology of black cherry, green ash, and yellow-poplar seedlings. Loats KV; Rebbeck J Environ Pollut; 1999 Aug; 106(2):237-48. PubMed ID: 15093051 [TBL] [Abstract][Full Text] [Related]
4. Higher growth temperatures decreased net carbon assimilation and biomass accumulation of northern red oak seedlings near the southern limit of the species range. Wertin TM; McGuire MA; Teskey RO Tree Physiol; 2011 Dec; 31(12):1277-88. PubMed ID: 21937670 [TBL] [Abstract][Full Text] [Related]
5. Carbon-nitrogen interactions in CO(2)-enriched white oak: physiological and long-term perspectives. Norby RJ; Pastor J; Melillo JM Tree Physiol; 1986 Dec; 2(1_2_3):233-241. PubMed ID: 14975857 [TBL] [Abstract][Full Text] [Related]
6. Gas exchange and dry matter allocation responses to elevation of atmospheric CO(2) concentration in seedlings of three tree species. Hollinger DY Tree Physiol; 1987 Sep; 3(3):193-202. PubMed ID: 14975812 [TBL] [Abstract][Full Text] [Related]
7. Influence of two growing seasons of experimental ozone fumigation on photosynthetic characteristics of white oak seedlings. Foster JR; Loats KV; Jensen KF Environ Pollut; 1990; 65(4):371-80. PubMed ID: 15092260 [TBL] [Abstract][Full Text] [Related]
8. Fungal growth, production, and sporulation during leaf decomposition in two streams. Suberkropp K Appl Environ Microbiol; 2001 Nov; 67(11):5063-8. PubMed ID: 11679327 [TBL] [Abstract][Full Text] [Related]
9. Effect of elevated [CO(2)] and varying nutrient application rates on physiology and biomass accumulation of Sitka spruce (Picea sitchensis). Murray MB; Smith RI; Friend A; Jarvis PG Tree Physiol; 2000 Apr; 20(7):421-434. PubMed ID: 12651438 [TBL] [Abstract][Full Text] [Related]
10. Effects of CO Tolley LC; Strain BR Oecologia; 1985 Jan; 65(2):166-172. PubMed ID: 28310662 [TBL] [Abstract][Full Text] [Related]
11. Growth dynamics and water use of seedlings of Quercus alba L. in CO Norby RJ; O'Neill EG New Phytol; 1989 Mar; 111(3):491-500. PubMed ID: 33874010 [TBL] [Abstract][Full Text] [Related]
12. Effect of elevated carbon dioxide concentration and root restriction on net photosynthesis, water relations and foliar carbohydrate status of loblolly pine seedlings. Will RE; Teskey RO Tree Physiol; 1997 Oct; 17(10):655-61. PubMed ID: 14759905 [TBL] [Abstract][Full Text] [Related]
13. Photosynthetic traits around budbreak in pre-existing needles of Sakhalin spruce (Picea glehnii) seedlings grown under elevated CO2 concentration assessed by chlorophyll fluorescence measurements. Kitao M; Tobita H; Utsugi H; Komatsu M; Kitaoka S; Maruyama Y; Koike T Tree Physiol; 2012 Aug; 32(8):998-1007. PubMed ID: 22705862 [TBL] [Abstract][Full Text] [Related]
14. Foliage of oaks grown under elevated CO2 reduces performance of Antheraea polyphemus (Lepidoptera: Saturniidae). Knepp RG; Hamilton JG; Zangerl AR; Berenbaum MR; DeLucia EH Environ Entomol; 2007 Jun; 36(3):609-17. PubMed ID: 17540072 [TBL] [Abstract][Full Text] [Related]
15. Patterns of photosynthesis and starch allocation in seedlings of four bottomland hardwood tree species subjected to flooding. Gravatt DA; Kirby CJ Tree Physiol; 1998 Jun; 18(6):411-417. PubMed ID: 12651366 [TBL] [Abstract][Full Text] [Related]
16. Diurnal and seasonal changes in the impact of CO(2) enrichment on assimilation, stomatal conductance and growth in a long-term study of Mangifera indica in the wet-dry tropics of Australia. Goodfellow J; Eamus D; Duff G Tree Physiol; 1997 May; 17(5):291-9. PubMed ID: 14759852 [TBL] [Abstract][Full Text] [Related]
17. Physiological adjustment of two full-sib families of ponderosa pine to elevated CO(2). Grulke NE; Hom JL; Roberts SW Tree Physiol; 1993 Jun; 12(4):391-401. PubMed ID: 14969909 [TBL] [Abstract][Full Text] [Related]
18. Mesophyll conductance in leaves of Japanese white birch (Betula platyphylla var. japonica) seedlings grown under elevated CO2 concentration and low N availability. Kitao M; Yazaki K; Kitaoka S; Fukatsu E; Tobita H; Komatsu M; Maruyama Y; Koike T Physiol Plant; 2015 Dec; 155(4):435-45. PubMed ID: 25690946 [TBL] [Abstract][Full Text] [Related]
19. Growth and physiological responses of yellow-poplar seedlings exposed to ozone and simulated acidic rain. Chappelka AH; Chevone BI; Seiler JR Environ Pollut; 1988; 49(1):1-18. PubMed ID: 15092670 [TBL] [Abstract][Full Text] [Related]
20. Early and late adjustments of the photosynthetic traits and stomatal density in Quercus ilex L. grown in an ozone-enriched environment. Fusaro L; Gerosa G; Salvatori E; Marzuoli R; Monga R; Kuzminsky E; Angelaccio C; Quarato D; Fares S Plant Biol (Stuttg); 2016 Jan; 18 Suppl 1():13-21. PubMed ID: 26307426 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]