These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 14969909)

  • 1. Physiological adjustment of two full-sib families of ponderosa pine to elevated CO(2).
    Grulke NE; Hom JL; Roberts SW
    Tree Physiol; 1993 Jun; 12(4):391-401. PubMed ID: 14969909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct and indirect effects of elevated CO(2) on whole-shoot respiration in ponderosa pine seedlings.
    Griffin KL; Ball JT; Strain BR
    Tree Physiol; 1996; 16(1_2):33-41. PubMed ID: 14871745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of elevated [CO(2)] and varying nutrient application rates on physiology and biomass accumulation of Sitka spruce (Picea sitchensis).
    Murray MB; Smith RI; Friend A; Jarvis PG
    Tree Physiol; 2000 Apr; 20(7):421-434. PubMed ID: 12651438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responses of foliar gas exchange to long-term elevated CO(2) concentrations in mature loblolly pine trees.
    Liu S; Teskey RO
    Tree Physiol; 1995 Jun; 15(6):351-9. PubMed ID: 14965943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stem maintenance and construction respiration in Pinus ponderosa grown in different concentrations of atmospheric CO(2).
    Carey EV; DeLucia EH; Ball JT
    Tree Physiol; 1996; 16(1_2):125-130. PubMed ID: 14871755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gas exchange and dry matter allocation responses to elevation of atmospheric CO(2) concentration in seedlings of three tree species.
    Hollinger DY
    Tree Physiol; 1987 Sep; 3(3):193-202. PubMed ID: 14975812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosynthetic adjustment in field-grown ponderosa pine trees after six years of exposure to elevated CO(2).
    Tissue DT; Griffin KL; Ball JT
    Tree Physiol; 1999 Apr; 19(4_5):221-228. PubMed ID: 12651564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlorophyll and carotenoid concentrations in two varieties of Pinus ponderosa seedlings subjected to long-term elevated carbon dioxide.
    Houpis JL; Surano KA; Cowles S; Shinn JH
    Tree Physiol; 1988 Jun; 4(2):187-93. PubMed ID: 14972829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elevated atmospheric CO2 concentration alters the effect of phosphate supply on growth of Japanese red pine (Pinus densiflora) seedlings.
    Kogawara S; Norisada M; Tange T; Yagi H; Kojima K
    Tree Physiol; 2006 Jan; 26(1):25-33. PubMed ID: 16203711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the relationships among O(3) uptake, conductance, and photosynthesis in needles of Pinus ponderosa.
    Weber JA; Clark CS; Hogsett WE
    Tree Physiol; 1993 Sep; 13(2):157-72. PubMed ID: 14969893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth and photosynthesis of loblolly pine (Pinus taeda) after exposure to elevated CO(2) for 19 months in the field.
    Tissue DT; Thomas RB; Strain BR
    Tree Physiol; 1996; 16(1_2):49-59. PubMed ID: 14871747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Branch growth and gas exchange in 13-year-old loblolly pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization.
    Maier CA; Johnsen KH; Butnor J; Kress LW; Anderson PH
    Tree Physiol; 2002 Nov; 22(15-16):1093-106. PubMed ID: 12414369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of elevated CO(2) and light availability on the photosynthetic light response of trees of contrasting shade tolerance.
    Kubiske ME; Pregitzer KS
    Tree Physiol; 1996 Mar; 16(3):351-8. PubMed ID: 14871736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responses of loblolly pine seedlings to elevated CO(2) and fluctuating water supply.
    Tschaplinski TJ; Norby RJ; Wullschleger SD
    Tree Physiol; 1993 Oct; 13(3):283-96. PubMed ID: 14969886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of CO
    Tolley LC; Strain BR
    Oecologia; 1985 Jan; 65(2):166-172. PubMed ID: 28310662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of season, needle age and elevated atmospheric CO(2) on photosynthesis in Scots pine (Pinus sylvestris).
    Jach ME; Ceulemans R
    Tree Physiol; 2000 Feb; 20(3):145-157. PubMed ID: 12651467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gas exchange characteristics of mangosteen (Garcinia mangostana L.) leaves.
    Wiebel J; Eamus D; Chacko EK; Downton WJ; Lüdders P
    Tree Physiol; 1993 Jul; 13(1):55-69. PubMed ID: 14969901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthetic traits around budbreak in pre-existing needles of Sakhalin spruce (Picea glehnii) seedlings grown under elevated CO2 concentration assessed by chlorophyll fluorescence measurements.
    Kitao M; Tobita H; Utsugi H; Komatsu M; Kitaoka S; Maruyama Y; Koike T
    Tree Physiol; 2012 Aug; 32(8):998-1007. PubMed ID: 22705862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blue wild-rye grass competition increases the effect of ozone on ponderosa pine seedlings.
    Andersen CP; Hogsett WE; Plocher M; Rodecap K; Lee EH
    Tree Physiol; 2001 Mar; 21(5):319-27. PubMed ID: 11262923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of elevated carbon dioxide concentration and root restriction on net photosynthesis, water relations and foliar carbohydrate status of loblolly pine seedlings.
    Will RE; Teskey RO
    Tree Physiol; 1997 Oct; 17(10):655-61. PubMed ID: 14759905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.