These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 14969943)

  • 1. Photosynthetic capacity of leaves of Eucalyptus globulus (Labill.) growing in the field with different nutrient and water supplies.
    Pereira JS; Chaves MM; Fonseca F; Araújo MC; Torres F
    Tree Physiol; 1992 Dec; 11(4):381-9. PubMed ID: 14969943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased photosynthesis following partial defoliation of field-grown Eucalyptus globulus seedlings is not caused by increased leaf nitrogen.
    Turnbull TL; Adams MA; Warren CR
    Tree Physiol; 2007 Oct; 27(10):1481-92. PubMed ID: 17669738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water and nutrient supply regimes and the water relations of juvenile leaves of Eucalyptus globulus.
    Correia MJ; Torres F; Pereira JS
    Tree Physiol; 1989 Dec; 5(4):459-71. PubMed ID: 14972969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of nitrogen remobilization from old leaves for new leaf growth of Eucalyptus globulus seedlings.
    Wendler R; Carvalho PO; Pereira JS; Millard P
    Tree Physiol; 1995 Oct; 15(10):679-83. PubMed ID: 14966002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of growth, photosynthetic capacity and water stress in Eucalyptus globulus coppice regrowth and seedlings during early development.
    Drake PL; Mendham DS; White DA; Ogden GN
    Tree Physiol; 2009 May; 29(5):663-74. PubMed ID: 19324701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationships between hydraulic architecture and leaf photosynthetic capacity in nitrogen-fertilized Eucalyptus grandis trees.
    Clearwater MJ; Meinzer FC
    Tree Physiol; 2001 Jul; 21(10):683-90. PubMed ID: 11446997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiology and anatomy of lenticel-like structures on leaves of Eucalyptus nitens and Eucalyptus globulus seedlings.
    Pinkard E; Gill W; Mohammed C
    Tree Physiol; 2006 Aug; 26(8):989-99. PubMed ID: 16651248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Within-canopy nitrogen and photosynthetic gradients are unaffected by soil fertility in field-grown Eucalyptus globulus.
    Turnbull TL; Kelly N; Adams MA; Warren CR
    Tree Physiol; 2007 Nov; 27(11):1607-17. PubMed ID: 17669750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seasonal leaf phenotypes in the canopy of a tropical dry forest: photosynthetic characteristics and associated traits.
    Kitajima K; Mulkey SS; Wright SJ
    Oecologia; 1997 Feb; 109(4):490-498. PubMed ID: 28307332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative physiology and demography of three Neotropical forest shrubs: alternative shade-adaptive character syndromes.
    Mulkey SS; Wright SJ; Smith AP
    Oecologia; 1993 Dec; 96(4):526-536. PubMed ID: 28312459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosynthetic light response of flooded cherrybark oak (Quercus pagoda) seedlings grown in two light regimes.
    Gardiner ES; Krauss KW
    Tree Physiol; 2001 Sep; 21(15):1103-11. PubMed ID: 11581017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of light availability on leaf structure and growth of two Eucalyptus globulus ssp. globulus provenances.
    James SA; Bell DT
    Tree Physiol; 2000 Sep; 20(15):1007-18. PubMed ID: 11305455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactive effects of water supply and defoliation on photosynthesis, plant water status and growth of Eucalyptus globulus Labill.
    Quentin AG; O'Grady AP; Beadle CL; Mohammed C; Pinkard EA
    Tree Physiol; 2012 Aug; 32(8):958-67. PubMed ID: 22874831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of canopy light environment and nitrogen availability on leaf photosynthetic characteristics and photosynthetic nitrogen-use efficiency of field-grown nectarine trees.
    Rosati A; Esparza G; DeJong TM; Pearcy RW
    Tree Physiol; 1999 Mar; 19(3):173-180. PubMed ID: 12651580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photosynthetic responses to ozone of upper and lower canopy leaves of Fagus crenata Blume seedlings grown under different soil nutrient conditions.
    Kinose Y; Fukamachi Y; Okabe S; Hiroshima H; Watanabe M; Izuta T
    Environ Pollut; 2017 Apr; 223():213-222. PubMed ID: 28162800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental and physiological controls over oxygen and carbon isotope composition of Tasmanian blue gum, Eucalyptus globulus.
    Cernusak LA; Farquhar GD; Pate JS
    Tree Physiol; 2005 Feb; 25(2):129-46. PubMed ID: 15574395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defoliation and nitrogen effects on photosynthesis and growth of Eucalyptus globulus.
    Pinkard EA; Battaglia M; Mohammed CL
    Tree Physiol; 2007 Jul; 27(7):1053-63. PubMed ID: 17403659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leaf orientation, light interception and stomatal conductance of Eucalyptus globulus ssp. globulus leaves.
    James SA; Bell DT
    Tree Physiol; 2000 Jun; 20(12):815-823. PubMed ID: 12651502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaf dynamics, self-shading and carbon gain in seedlings of a tropical pioneer tree.
    Ackerly DD; Bazzaz FA
    Oecologia; 1995 Mar; 101(3):289-298. PubMed ID: 28307049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaf physiological versus morphological acclimation to high-light exposure at different stages of foliar development in oak.
    Rodríguez-Calcerrada J; Reich PB; Rosenqvist E; Pardos JA; Cano FJ; Aranda I
    Tree Physiol; 2008 May; 28(5):761-71. PubMed ID: 18316308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.