BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 14969951)

  • 1. The impact of water and nutrient deficiencies on the growth, gas exchange and water relations of red oak and chestnut oak.
    Kleiner KW; Abrams MD; Schultz JC
    Tree Physiol; 1992 Oct; 11(3):271-87. PubMed ID: 14969951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osmotic potential of several hardwood species as affected by manipulation of throughfall precipitation in an upland oak forest during a dry year.
    Tschaplinski TJ; Gebre GM; Shirshac TL
    Tree Physiol; 1998 May; 18(5):291-298. PubMed ID: 12651368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of overstory density on ecophysiology of red oak (Quercus rubra) and sugar maple (Acer saccharum) seedlings in central Ontario shelterwoods.
    Parker WC; Dey DC
    Tree Physiol; 2008 May; 28(5):797-804. PubMed ID: 18316311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water relations of seedlings of three Quercus species: variations across and within species grown in contrasting light and water regimes.
    Castro-Díez P; Navarro J
    Tree Physiol; 2007 Jul; 27(7):1011-8. PubMed ID: 17403654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water relations of several hardwood species in response to throughfall manipulation in an upland oak forest during a wet year.
    Gebre GM; Tschaplinski TJ; Shirshac TL
    Tree Physiol; 1998 May; 18(5):299-305. PubMed ID: 12651369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response of gas exchange to water stress in seedlings of woody angiosperms.
    Ni BR; Pallardy SG
    Tree Physiol; 1991 Jan; 8(1):1-9. PubMed ID: 14972892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ecophysiological analysis of woody species in contrasting temperate communities during wet and dry years.
    Kubiske ME; Abrams MD
    Oecologia; 1994 Aug; 98(3-4):303-312. PubMed ID: 28313906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photosynthetic characteristics in canopies of Quercus rubra, Quercus prinus and Acer rubrum differ in response to soil water availability.
    Turnbull MH; Whitehead D; Tissue DT; Schuster WS; Brown KJ; Engel VC; Griffin KL
    Oecologia; 2002 Feb; 130(4):515-524. PubMed ID: 28547252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solute accumulation of chestnut oak and dogwood leaves in response to throughfall manipulation of an upland oak forest.
    Gebre GM; Tschaplinski TJ
    Tree Physiol; 2002 Mar; 22(4):251-60. PubMed ID: 11874721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in leaf gas exchange and water relations among species and tree sizes in an Arizona pine-oak forest.
    Kolb TE; Stone JE
    Tree Physiol; 2000 Jan; 20(1):1-12. PubMed ID: 12651521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drought tolerance and transplanting performance of holm oak (Quercus ilex) seedlings after drought hardening in the nursery.
    Villar-Salvador P; Planelles R; Oliet J; Peñuelas-Rubira JL; Jacobs DF; González M
    Tree Physiol; 2004 Oct; 24(10):1147-55. PubMed ID: 15294761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of water-use efficiency of seedlings from two sympatric oak species: genotype x environment interactions.
    Ponton S; Dupouey JL; Bréda N; Dreyer E
    Tree Physiol; 2002 Apr; 22(6):413-22. PubMed ID: 11960766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem.
    Renninger HJ; Carlo N; Clark KL; Schäfer KV
    Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Root growth and water relations of oak and birch seedlings.
    Osonubi O; Davies WJ
    Oecologia; 1981 Jan; 51(3):343-350. PubMed ID: 28310018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geographical variation in water relations, hydraulic architecture and terpene composition of Aleppo pine seedlings from Italian provinces.
    Tognetti R; Michelozzi M; Giovannelli A
    Tree Physiol; 1997 Apr; 17(4):241-50. PubMed ID: 14759863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy investment in leaves of red maple and co-occurring oaks within a forested watershed.
    Nagel JM; Griffin KL; Schuster WS; Tissue DT; Turnbull MH; Brown KJ; Whitehead D
    Tree Physiol; 2002 Aug; 22(12):859-67. PubMed ID: 12184975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary trade-offs between drought resistance mechanisms across a precipitation gradient in a seasonally dry tropical oak (Quercus oleoides).
    Ramírez-Valiente JA; Cavender-Bares J
    Tree Physiol; 2017 Jul; 37(7):889-901. PubMed ID: 28419347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific leaf metabolic changes that underlie adjustment of osmotic potential in response to drought by four Quercus species.
    Aranda I; Cadahía E; Fernández de Simón B
    Tree Physiol; 2021 May; 41(5):728-743. PubMed ID: 33231684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quercus species differ in water and nutrient characteristics in a resource-limited fall-line sandhill habitat.
    Donovan LA; West JB; McLeod KW
    Tree Physiol; 2000 Aug; 20(14):929-36. PubMed ID: 11303567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drought adaptations and responses in five genotypes of Fraxinus pennsylvanica Marsh.: photosynthesis, water relations and leaf morphology.
    Abrams MD; Kubiske ME; Steiner KC
    Tree Physiol; 1990 Sep; 6(3):305-15. PubMed ID: 14972941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.