BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 14969997)

  • 1. Molecular mechanisms of pulmonary peptidomimetic drug and peptide transport.
    Groneberg DA; Fischer A; Chung KF; Daniel H
    Am J Respir Cell Mol Biol; 2004 Mar; 30(3):251-60. PubMed ID: 14969997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Drug transport in the respiratory epithelium].
    Paul HB; Welte T; Groneberg DA
    Pneumologie; 2005 Jul; 59(7):461-9. PubMed ID: 16047280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization of the peptide transporter PEPT2 in the lung: implications for pulmonary oligopeptide uptake.
    Groneberg DA; Nickolaus M; Springer J; Döring F; Daniel H; Fischer A
    Am J Pathol; 2001 Feb; 158(2):707-14. PubMed ID: 11159208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of drugs by proton-coupled peptide transporters: pearls and pitfalls.
    Brandsch M
    Expert Opin Drug Metab Toxicol; 2009 Aug; 5(8):887-905. PubMed ID: 19519280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The renal type H+/peptide symporter PEPT2: structure-affinity relationships.
    Biegel A; Knütter I; Hartrodt B; Gebauer S; Theis S; Luckner P; Kottra G; Rastetter M; Zebisch K; Thondorf I; Daniel H; Neubert K; Brandsch M
    Amino Acids; 2006 Sep; 31(2):137-56. PubMed ID: 16868651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a potential substrate binding domain in the mammalian peptide transporters PEPT1 and PEPT2 using PEPT1-PEPT2 and PEPT2-PEPT1 chimeras.
    Fei YJ; Liu JC; Fujita T; Liang R; Ganapathy V; Leibach FH
    Biochem Biophys Res Commun; 1998 May; 246(1):39-44. PubMed ID: 9600064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of a small N-terminal region in mammalian peptide transporters for substrate affinity and function.
    Döring F; Martini C; Walter J; Daniel H
    J Membr Biol; 2002 Mar; 186(2):55-62. PubMed ID: 11944083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel strategies of aerosolic pharmacotherapy.
    Groneberg DA; Paul H; Welte T
    Exp Toxicol Pathol; 2006 Jun; 57 Suppl 2():49-53. PubMed ID: 16580826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rapid in vitro screening for delivery of peptide-derived peptidase inhibitors as potential drug candidates via epithelial peptide transporters.
    Foltz M; Meyer A; Theis S; Demuth HU; Daniel H
    J Pharmacol Exp Ther; 2004 Aug; 310(2):695-702. PubMed ID: 15051798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications.
    Döring F; Walter J; Will J; Föcking M; Boll M; Amasheh S; Clauss W; Daniel H
    J Clin Invest; 1998 Jun; 101(12):2761-7. PubMed ID: 9637710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression, localisation and functional implications of the transporter protein PEPT2 in the upper respiratory tract.
    Quarcoo D; Fischer TC; Heppt W; Lauenstein HD; Pilzner C; Welte T; Groneberg DA
    Respiration; 2009; 77(4):440-6. PubMed ID: 19052442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution and function of the peptide transporter PEPT2 in normal and cystic fibrosis human lung.
    Groneberg DA; Eynott PR; Döring F; Dinh QT; Oates T; Barnes PJ; Chung KF; Daniel H; Fischer A
    Thorax; 2002 Jan; 57(1):55-60. PubMed ID: 11809991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An update on renal peptide transporters.
    Daniel H; Rubio-Aliaga I
    Am J Physiol Renal Physiol; 2003 May; 284(5):F885-92. PubMed ID: 12676733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of the mechanisms of uptake of 5-aminolevulinic acid derivatives by PEPT1 and PEPT2 transporters as a tool to improve photodynamic therapy of tumours.
    Rodriguez L; Batlle A; Di Venosa G; MacRobert AJ; Battah S; Daniel H; Casas A
    Int J Biochem Cell Biol; 2006; 38(9):1530-9. PubMed ID: 16632403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Valacyclovir: a substrate for the intestinal and renal peptide transporters PEPT1 and PEPT2.
    Ganapathy ME; Huang W; Wang H; Ganapathy V; Leibach FH
    Biochem Biophys Res Commun; 1998 May; 246(2):470-5. PubMed ID: 9610386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrates of the human oligopeptide transporter hPEPT2.
    Zhao D; Lu K
    Biosci Trends; 2015 Aug; 9(4):207-13. PubMed ID: 26355221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of intestinal absorption and renal reabsorption of an orally active ace inhibitor: uptake and transport of fosinopril in cell cultures.
    Shu C; Shen H; Hopfer U; Smith DE
    Drug Metab Dispos; 2001 Oct; 29(10):1307-15. PubMed ID: 11560874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The PDZ domain protein PDZK1 interacts with human peptide transporter PEPT2 and enhances its transport activity.
    Noshiro R; Anzai N; Sakata T; Miyazaki H; Terada T; Shin HJ; He X; Miura D; Inui K; Kanai Y; Endou H
    Kidney Int; 2006 Jul; 70(2):275-82. PubMed ID: 16738539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide transporters: structure, function, regulation and application for drug delivery.
    Terada T; Inui K
    Curr Drug Metab; 2004 Feb; 5(1):85-94. PubMed ID: 14965252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of the histidyl residue obligatory for the catalytic activity of the human H+/peptide cotransporters PEPT1 and PEPT2.
    Fei YJ; Liu W; Prasad PD; Kekuda R; Oblak TG; Ganapathy V; Leibach FH
    Biochemistry; 1997 Jan; 36(2):452-60. PubMed ID: 9003198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.